凸优化 & 1概念

---恢复内容开始---

放射集合
系数之和为1 相加仍然能在集合内,就是 纺射集合
子空间加一个常熟 就是纺射集合 ,
例题2.1
一类特殊的线性方程组的解可以看作纺射 集合

纺射包 aff C
是由集合C中所有店组成的仿射组合

定义集合C的维度为其纺射包的位数,

特例 : R2上的单位元 纺射包 是全空间R 维度为2 但是一般来说 单位元还的维度是1

如果以一个集合 C的仿设纬度小于n
称 集合C的相对内部为aff C的内部
记为relint

例题2.2
考虑 R3中的处于(x1,x2)平面的一个正方形

C= 一个上述正方形
其纺射包是一个平面,但是内部为空,相对内部不为空

C的边界是自身,但是相对边界是其边框(相对边界对应相对内部)

2.1.4 凸集

集合C被称为凸集,当C中元素 加和为1(但都为正数时)还在 C集内 称为凸集

集合C中所有点的凸组合称为凸包
记为conv C

凸组合的概念可以扩展到无线级数,积分和大多数形式的概况v分布

级数扩展:
无穷级数系数之和为1, x1 x2 x3 等等都属于凸集内的点,
如果收敛 并且和也在凸集内,就说 视野更凸集

积分扩展:
系数在C上的积分等于1;
系数*x 的积分结果仍然在集合内

概率扩展(最一般的情况):
C 属于Rn 是凸集, x是随机变量,
x 属于 C 的概率是1
那么 Ex 属于C
事实上 这里的形式包含了上述的特殊情况,
举例: 如果x 是两点分布, 就回退到了两个点的简单的凸组合

2.1.5 锥

系数为正即可(非负的线性组合)

集合C的锥包 是C中严肃 的所有锥组合的集合

2.2 重要的例子

  • 空集,任意一个点 , 全空间Rn 都是Rn 的纺射子集
  • 任意直线是仿射的。如果直线通过零点,那就成为了自空间, 也是凸锥
  • 一条射线 是凸的 但不是仿射的
  • 任意子空间是纺射的 凸锥

2.2.1 超平面与半空间

超平面是关于x的非平凡线性方程的解空间( 因为是一个仿设集合)

几何上 超平面可以解释为与给定向量的内积为常数的点的集合
也可以堪称是 法线防线为a 的超平面, 而常数b 决定了这个平面从原点的偏移
我们甚至可以写成
{x| a^T(x-x0)=0}=x0+a的正交补

一个超平面将Rn 划分为两个半空间(闭的)
半空间是凸的但是不仿射的

开半空间 定义如其名

2.2.2 球和椭球

Euclid 球 简称球
就是说 Ecuild 范数的意思
球是 凸集
1054453-20180317103841532-1777164715.png
1054453-20180317104202316-1136653542.png
以上需要一点矩阵知识

2.2.3 范数球和范数锥

1054453-20180317104415379-617004050.png
Rn 中的范数

附A.1.2
1054453-20180317104730166-741765979.png
非负
正定
齐次
满足三角不等式
例子说明
1054453-20180317111708933-309907529.png

二阶锥的实例 冰淇凌锥
1054453-20180317111929449-1212340233.png

2.2.4 多面体

多面体是 有限个半空间和超平面的交集

仿射集合(子空间 超平面, 直线) 涉嫌,线段, 和半空间都是 多面体。
显而易见,多面体是凸集。

有界的多面体有时候被称为多胞形

1054453-20180317112201703-2140343337.png

五个半空间交集定义的多面体
形式化定义
1054453-20180317112257994-760245490.png
简洁的定义如下
1054453-20180317112336078-628822027.png
非负象限 具有非负分量的点的集合
1054453-20180317112417983-1198803796.png

单纯形

1054453-20180317112538068-1558651329.png

conv{v0,...,vk} 单纯形
例题2.5
1054453-20180317112745774-1248909263.png
k+1 个点 仿射独立 那么单纯形的维数被定义为k
单位单纯形 是由零向量和单位xiangliang 0, e1,...,en 决定的 n维单纯形。

单纯形的定义
1054453-20180317113723542-1270929123.png
1054453-20180317113748006-924035832.png

从多面体的角度理解单纯形

首先 单纯形是 满足一定条件点(仿射独立) 的凸包
1054453-20180324094200800-2059108130.png
采用这种写法 简化
注意的B 的规格是 nxk 并且秩为k

1054453-20180324094922792-1486314619.png

1054453-20180324094936923-849273420.png

不等式的角度

1054453-20180324095335300-351228609.png
因为A1 A2 是随B 确定而确定的矩阵
所以这是关于x 的线性要求

多面体的凸包描述

1054453-20180324100621621-1446511026.png

一个凸包和一个锥包的并()
任何一个多面体都可以如此表示
1054453-20180324102353351-911705975.png
这个经典的例子说明了,使用不等式和 凸包表示一个多面体 的计算量是完全不同的

正定锥 与 半正定锥

1054453-20180324103248273-1039774883.png
我们认为半正定矩阵是一个凸锥
1054453-20180324103303943-981698147.png
以为两个半正定矩阵的 正系数和 仍然是半正定矩阵

保凸运算

交集是保凸的
1054453-20180324103505902-1801212376.png

1054453-20180324103639319-1287728595.png
有分析 我们同样认识到半正定锥 是凸的

这种绝对值不等式 由于是两个线性不等式,我们认为他是由无数个平板的交的来 因此是凸的
1054453-20180324104204073-1608203614.png

事实上 一个闭集S是包含他的所有半空间的交集

仿射函数

1054453-20180324104545395-1494032089.png
说明了仿射函数是 保凸运算

1054453-20180324104611512-1043143006.png

凸集的和 部分和 是保凸运算
1054453-20180324104705575-203731376.png

1054453-20180324110026321-1998235194.png线性矩阵不等式的解
这里的矩阵是对称的,我们首先知道这种
是锥 半正定的 凸的
于是x 就是一种仿射映射下的原像 于是也是凸的

1054453-20180324110435987-1373299446.png
双曲锥 的仿射函数 到二阶锥

1054453-20180324110626062-1326838823.png

线性分式与透视函数

1054453-%2020180324110816804-2012974096.png

透视函数的原理:小孔成像
1054453-20180324115056505-789659689.png
令人印象深刻

2.4 广义不等式

正常锥的定义 凸的 闭的 实的 尖的
1054453-20180428104607518-1448485710.png

转载于:https://www.cnblogs.com/sfzyk/p/8588573.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值