四边形内接于圆定理_最值几何(三) 辅助圆

点击蓝字

关注我们

在数学的世界里,重要的不是我们知道什么,而是我们怎样知道什么。

–pythagoras(毕达哥拉斯)

2c554e3f46b49d1d10cbb03868bcc930.png

几何最值大策略------两大公理+三大变换

两大公理

公理一:两点之间线段最短

引申:三角形三边关系

公理二:垂线段最短

三大变换

平移、旋转、轴对称

今天我们讲解辅助圆最值问题(三角形三边关系)

基础模型:圆外一点到圆上的最值

A为圆外一点,B为圆上动点,求AB的最值

ee3aafcd1852c7e12fb86de0b60ec876.gif

原理:三角形三边关系(第三边大于两边只差,小于两边之和)

3c85bfe30f225cc0151665e9221dc3d9.png

模型3.1:定点定长

圆的定义:到定点(圆心)距离等于定长(半径)的点集合。

当题目中发现动点到定点距离不变,则动点在圆以定点为圆心,不变距离为半径的圆上。

例1 动点折叠

如图,在边长为2的正方形ABCD中,E是AB的中点,F是AD边上的一个动点,将△AEF沿EF所在直线折叠得到△GEF,连接GC,则GC长度的最小值是                

d22dfaf3f08e491666ebae1fde1c4432.png

分析:

不管点F运动到哪里,△AEF≌△GEF始终成立,则动点G到定点E的距离始终等于AE长,满足定点定长,则点G在以点E为圆心,AE为半径的圆弧上。

21adf0ea6e6d585c3cfc0f8e13cbbf3c.gif

所以看基础模型,当E、G、C三点共线时,CG最短。

465c2b26a1b6f67f698c481028581cd9.png 6cfeee1ee4d573217d5bea3328507548.png

总结:动点折叠,轨迹为圆。

练1  动点折叠

如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点点N是AB边上一动点将△AMN沿MN所在的直线翻折得到△AM,连接AC,则线段AC长度的最小值是            

2a1d3f54c7db176986c737f740b57859.png

先仔细想想,再看答案。

d77a770ae249c3bcb4e0cfb494ba59dc.png a6b03562adcd291aa9b5b064bef12875.png a2cb7739e6fa3dc9b89486a8eab9a9bc.png

模型3.2:定弦定角

圆周角定理:同弧所对圆周角相等。

圆周角定理+等弧对等弦,所以在一个三角形中,当一个角所对的边不变,且这个角的大小不变,则这个角的顶点在这个三角形的外接圆上。

8a0fec9b737e868031dafe6d9550fec3.gif

例2  定角定弦

如图,点P在第一象限,△ABP是边长为2的等边三角形,当点A在x轴的正半轴上运动时,点B随之在y轴的正半轴上运动,运动过程中,点P到原点的最大距离是________.

029b7540f61a531c25cdb86b6a6db585.png

分析:

本题由于AB两点都是动点,分析起来比较难,我们不如改变视角,用手摁住AB不动,让坐标系动起来。

fccf857f28c607f19a7eb0dabe611736.png

由于AB长固定,∠AOB=90°始终成立,则O点轨迹在圆上,就像这样。

585b058ee1e34fc9247e288edbd96b01.gif

所以我们只要确定圆心,三点共线,就可以迎刃而解!

b9aa26823d26c76d4d49e89c9ccbe4d9.png d7c806b32ed74b29d9781b33a033e077.png

总结:定长线段移动时,可以转化参考系,化动为静,变静为动。运动是相对的,并非绝对。

模型3.3:四点共圆

我们知道圆的内接四边形对角互补。

那什么样的四边形四点共圆呢?

第一类:对角互补四边形(∠A+∠C=180°)

e9e05a1c0625f4a760caf607f878e957.png

第二类:等角对同边(∠BAC=∠BDC)

6765f5d080946935d962adea8d3a3860.png

第三类:反8相似(△ABO∽△DCO)

6a43857ec12359e37bd2fac17d70baab.png

例3  找找共圆

正方形ABCD中,∠EAF=45°,交BD于G、H

找找哪四个点共圆?

c930ffe30e114d99052cf5a1c2735f62.png

解析:

3fdc2a27afe7a51f03a6422bd4073c2e.png

A、G、F、D四点共圆

b442ba2da03fdbb2cebeee275c381f60.png

A、B、E、H四点共圆

总结:熟悉上述三类模型,即可找到四点共圆。

最后,提一个小问题:辅助圆的类型有哪几类核,能总结出来吗?

最值问题先告一段落,后续还有更精彩的专题,敬请期待!

往期精彩回顾:

最值几何(一)

最值几何(二)---垂线段最短

你不知道的尺规作图(一)

你不知道的尺规作图(二)

你不知道的尺规作图(三)

你不知道的尺规作图(四)

你不知道的尺规作图(五)

老师加的那条辅助线为什么我没想到?I-基础篇

老师加的那条辅助线为什么我没想到?II-探究

“一边一角”全等构造-实战破题篇(1)

“一边一角”全等构造-实战破题篇(2)

“一边一角”全等构造-实战破题篇(3)

扫码关注我们

微信号|天才数学战

9fc9be25997aba905c965bb1a94f0778.png

球分享

球点赞

2f2ac26accd1b1a0a02ff9a728a12629.gif

球在看

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值