点击蓝字
关注我们
在数学的世界里,重要的不是我们知道什么,而是我们怎样知道什么。
–pythagoras(毕达哥拉斯)

几何最值大策略------两大公理+三大变换
两大公理
公理一:两点之间线段最短
引申:三角形三边关系
公理二:垂线段最短
三大变换
平移、旋转、轴对称
今天我们讲解辅助圆最值问题(三角形三边关系)
基础模型:圆外一点到圆上的最值
A为圆外一点,B为圆上动点,求AB的最值

原理:三角形三边关系(第三边大于两边只差,小于两边之和)

模型3.1:定点定长
圆的定义:到定点(圆心)距离等于定长(半径)的点集合。
当题目中发现动点到定点距离不变,则动点在圆以定点为圆心,不变距离为半径的圆上。
例1 动点折叠
如图,在边长为2的正方形ABCD中,E是AB的中点,F是AD边上的一个动点,将△AEF沿EF所在直线折叠得到△GEF,连接GC,则GC长度的最小值是

分析:
不管点F运动到哪里,△AEF≌△GEF始终成立,则动点G到定点E的距离始终等于AE长,满足定点定长,则点G在以点E为圆心,AE为半径的圆弧上。

所以看基础模型,当E、G、C三点共线时,CG最短。


总结:动点折叠,轨迹为圆。
练1 动点折叠
如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点点N是AB边上一动点将△AMN沿MN所在的直线翻折得到△AM,连接AC,则线段AC长度的最小值是

先仔细想想,再看答案。



模型3.2:定弦定角
圆周角定理:同弧所对圆周角相等。
圆周角定理+等弧对等弦,所以在一个三角形中,当一个角所对的边不变,且这个角的大小不变,则这个角的顶点在这个三角形的外接圆上。

例2 定角定弦
如图,点P在第一象限,△ABP是边长为2的等边三角形,当点A在x轴的正半轴上运动时,点B随之在y轴的正半轴上运动,运动过程中,点P到原点的最大距离是________.

分析:
本题由于AB两点都是动点,分析起来比较难,我们不如改变视角,用手摁住AB不动,让坐标系动起来。

由于AB长固定,∠AOB=90°始终成立,则O点轨迹在圆上,就像这样。

所以我们只要确定圆心,三点共线,就可以迎刃而解!


总结:定长线段移动时,可以转化参考系,化动为静,变静为动。运动是相对的,并非绝对。
模型3.3:四点共圆
我们知道圆的内接四边形对角互补。
那什么样的四边形四点共圆呢?
第一类:对角互补四边形(∠A+∠C=180°)

第二类:等角对同边(∠BAC=∠BDC)

第三类:反8相似(△ABO∽△DCO)

例3 找找共圆
正方形ABCD中,∠EAF=45°,交BD于G、H
找找哪四个点共圆?

解析:

A、G、F、D四点共圆

A、B、E、H四点共圆
总结:熟悉上述三类模型,即可找到四点共圆。
最后,提一个小问题:辅助圆的类型有哪几类核,能总结出来吗?
最值问题先告一段落,后续还有更精彩的专题,敬请期待!
往期精彩回顾:
最值几何(一)
最值几何(二)---垂线段最短
你不知道的尺规作图(一)
你不知道的尺规作图(二)
你不知道的尺规作图(三)
你不知道的尺规作图(四)
你不知道的尺规作图(五)
老师加的那条辅助线为什么我没想到?I-基础篇
老师加的那条辅助线为什么我没想到?II-探究
“一边一角”全等构造-实战破题篇(1)
“一边一角”全等构造-实战破题篇(2)
“一边一角”全等构造-实战破题篇(3)
扫码关注我们
微信号|天才数学战

球分享
球点赞

球在看