蝴蝶定理(Butterfly Theorem),是古代欧氏平面几何中最精彩的结果之一。这个命题最早出现在1815年,由W.G.霍纳提出证明。而“蝴蝶定理”这个名称最早出现在《美国数学月刊》1944年2月号,题目的图形像一只蝴蝶。这个定理的证法不胜枚举,至今仍然被数学爱好者研究,在考试中时有各种变形。
蝴蝶定理(Butterfly Theorem):设M为圆内弦EF的中点,过M作弦AB和CD。设AD和BC各相交EF于点P和Q,则M是PQ的中点。

【简析】
如图,过点D作弦DN∥EF,连接MN、QN和BN,
四边形BCDN为圆的内接四边形,
所以∠CDN+∠CBN=180°,
根据圆的对称性,易证MD=MN,∠DME=∠NMF,
那么可以得到∠QMN=∠MND=∠MDN,
所以∠QMN+∠CBN=180°,
则M、N、B、Q四点共圆,
∠MNQ=∠MBQ=∠ADC,
那么可得△DMP≌△NMQ(ASA),
进而得到MP=MQ。
