托勒密定理:圆内接四边形中,两条对角线的乘积等于两组对边的乘积之和
定理的证明需要构造相似,用到两组相似?,结合证明
过程如下:
当然我们还可以从不同的构造方向,分别以点A点B点C三点为顶点,构造相似?,同样可以得出结论,不妨来动手试一试:
托勒密定理的逆定理:在凸四边形ABCD中,若两条对角线的乘积等于两组对边的乘积之和,则四边形ABCD内接于圆。
拓展四点共圆情况:
1. 若四个点到一个定点的距离相等,则这四点共圆(圆的定义)
2. 同斜边的直角三角形的四个顶点共圆(直径所对圆周角是直角)
3. 若一个四边形的一组对角互补(和为180°)则这四个点共圆
(圆内接四边形对角互补)
4. 若一个四边形的外角等于它的内对角,则这个四边形的四个顶点共圆
5. 若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两端共圆(在同圆或等圆中,同弧或等弧所对圆周角相等)
在考试中常考题型,熟练后,秒出结论,不成问题!
托勒密定理不止在初中几何中应用广泛,在高中解三角形和圆锥曲线中也有很多妙用!
整理了部分北京初中几何考题,来练练手:
非常经典的20年东城二模,此题答案在如下推荐链接:
2019-2020北京市初三二模数学东城、西城选填核心题目对比,几何综合、新定义详解
往期推荐:
一题多解,品一品60°和45°几何综合
几道有意思的几何综合
专题讲义暂不提供电子版。