
1、圆:
(1)圆可以看作线段OA绕着一个端点O旋转一周,另一个端点A所形成的的图形。——运动的角度
点O为圆心,OA为半径 记作⊙O
(2)圆可以看作到定点的距离等于定长的点的集合。——集合的角度
定点——圆心 定长——半径
2、弦:连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
3、弧:圆上任意两点间的部分叫做圆弧,简称弧。
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。
4、优弧和劣弧:小于半圆的弧叫做劣弧;大于半圆的弧(用三个字母表示)叫做优弧。
5、等弧:在同圆或等圆中,能重合的弧叫等弧。
6、对称性:既是轴对称图形又是中心对称图形。
重点:应用是圆中的半径所构成等腰三角形的进行计算。
典型题目:
如图,⊙O的直径BA的延长线与弦DC的延长线交于点E,且CE=OB,
已知∠DOB=72°,求∠E
解:连接OC,设∠E=x
∵ CE=OB,OC=OB
∴ ∠E= ∠1=x
∵∠2= ∠E+ ∠1=2x
∵ OC=OD
∴ ∠2= ∠D=2x
∵ ∠DOB=∠ E+∠D=3x= 72°
∴x=24°
∴ ∠E= 24°
教学重点:
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
明确垂径定理的一个推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
根据垂径定理与推论可知对于一个圆和一条直线来说。如果具备上述五个条件中的任何两个条件都可以推出其他三个结论。
垂径定理及其推论反映了圆的重要性质,是圆的轴对称性的具体化,也是证明线段相等、角相等、垂直关系的重要依据。
典型习题:
难点:
易错点:
1、定义:顶点在圆心的角叫做圆心角。(如:∠AOB和∠A‘OB’ )
2、圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.
3、推论:同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等.
典型习题:
1、定义:顶点在圆上,并且两边都和圆相交的角叫圆周角.
2、圆周角定理:一条弧所对的圆周角等于它所对圆心角的一半. ∠AOB=2∠ACB
3、推论1:同弧或等弧所对的圆周角相等.∠ACB=∠AC’B
推论2:半圆(或直径)所对的圆周角是直角.
推论3:90°的圆周角所对的弦是直径
典型习题:
4、圆内接多边形:如果一个多边形的所有顶点都在一个圆上,这个多边形
叫做圆内接多边形,这个圆叫做这个多边形的外接圆
5、圆内接四边形:圆内接四边形的对角互补。
∵圆内接四边形ABCD
∴∠ABC+∠ADC=180°
圆内接四边形的外角等于内对角
∵圆内接四边形ABCD
∴∠ADE=∠B
典型习题:
设⊙O的半径为r,点到圆心的距离为d,则有:
典型习题:
如图,Rt△ABC中,∠C=90°,CD⊥AB于D,AC=3,AB=5,以C为圆心,AC长为半径画圆,试指出A、B、D与⊙C的关系。
解:∵ ∠C=90°,AC=3,AB=5
∴由勾股定理得BC=4
∵CD⊥AB于D
∴由△ABC面积得CD=2.4
∵以C为圆心,AC长为半径画圆
∴AC= r =3 ,点A在圆上
BD=4﹥r,点B在圆外
CD=2.4 ﹤ r,点D在圆内
典型习题:
在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与直线AB有怎样的位置关系?为什么?
(1)r=2cm;
(2)r=2.4cm
(3)r=3cm。
解:∵ ∠C=90°,AC=3cm,AB=5cm
∴由勾股定理得BC=4cm
∵ CD⊥AB于D
∴由△ABC面积得CD=2.4cm
∵以C为圆心
∴圆心到直线AB的距离d=CD=2.4cm
∴ r=2cm时,d﹥r,⊙C与直线AB相离;
r=2.4cm时,d=r,⊙C与直线AB相切;
r=3cm时,d﹤r,⊙C与直线AB相交。
6、切线的判定定理:经过半径的外端点并且垂直于这条半径的直线是圆的切线。
∵OA是半径,
OA⊥m于点A
∴直线 m是⊙O的切线
典型习题:
7、切线的性质定理:圆的切线垂直于过切点的半径.
∵直线 m切⊙O于点A
∴OA⊥直线 m
归纳:切线的判定方法有三种:
①直线与圆有唯一公共点;
②直线到圆心的距离等于该圆的半径;
③切线的判定定理.
8、切线长的定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,
叫做这点到圆的切线长。(PA、PB)
9、切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,
这一点和圆心的连线平分两条切线的夹角。
∵PA,PB是圆的切线
∴PA=PB,
∠APO=∠BPO
切线长定理的拓展结论:
∵PA,PB是圆的切线
∴PA=PB,
∠APO=∠BPO
∴OP ⊥AB
∴AE=BE
M为弧AB中点
典型习题:
10、三角形内切圆:与三角形各边都相切的圆叫做三角形的内切圆。
三角形内切圆的圆心O叫做三角形的内心,内心是三角形三条角平分线的交点,它到三边距离相等。
结论:
典型习题:
1、△ABC中,⊙O是△ABC的内切圆,切点是D,E,F,AB=12,BC=10,AC=8,求AD、BE、CF
解:设AD=x
∵ ⊙O是△ABC的内切圆
∴AD=AF=x
BD=BE=12-x
CE=CF=8-x
∴BC=BE+CE=12-x+8-x=10
∴x=5
∴AD=5,BE=12-5=7,CF=8-5=3
2、Rt△ABC中,∠C=90°,⊙O是△ABC的内切圆,切点是D,E,F,AB=13,BC=5,AC=12,求⊙O半径。
解:方法1:
方法2:
(1)定义:各边相等,各角也相等的多边形叫做正多边形。
(2)正n边形与圆有密切的关系:把圆分成n等分(n≥3),顺次连接各分点所得的多边形是这个圆的内接多边形。
(3)正多边形的中心:正多边形的外接圆的圆心.
(4)正多边形的半径:外接圆的半径R(OA和OB)
(5)正多边形的边心距:中心到正多边形的一边的距离r(OE)(内切圆半径)
(6)正多边形的中心角:正多边形的每一条边所对的圆心角ɑ( ∠ AOB)
(7)相关计算公式:
设边长为a,周长为L

典型习题:
1、已知等边△ABC的半径为2,求它的边心距、边长,周长、面积。
2.已知正四边形的边长为2,求它的外接圆的半径、内切圆半径、周长、面积。
3.已知六边形的边心距为 2cm,求它的边长、外接圆的半径、周长、面积。
难点:求半径相等的正三角形、正四边形、正六边形的面积比。
典型习题:
1.已知:扇形的圆心角为150°,半径为3,求扇形的弧长。
易错点:
2.已知:扇形的弧长为6π ,圆心角为120°,求扇形的面积。
3.一个扇形的弧长是6π ,面积是12π ,求扇形的圆心角。
(1)圆锥的侧面展开图是一个扇形。
(2)母线:这个扇形的半径(圆锥有无数条母线)
(3)圆锥底面圆周长:这个扇形的弧长
(4)圆锥的高:连结顶点与底面圆心的线段叫做圆锥的高h
h2+r2=R2
(5)圆锥的侧面积:
S侧= 1/2母线长×底面圆的周长
= 1/2R ×2πr= πrR
(6)圆锥的表面积:
S表=S侧+S底=πrR+πr2
典型习题:
如果圆锥的侧面积为20π平方厘米,它的母线长为5厘米,求圆锥的底面半径.
一审:三班黎昌翰、张潇博、郭煜航;二审:四班曹洛萌、邓雨含、王涵。
感谢六位小朋友。
有趣的数学在等你