四边形内接于圆定理_圆的重点和难点解析

本文详细介绍了圆的相关概念,包括圆的定义、弦、弧、等弧、对称性,重点讲解了垂径定理及其推论,并通过例题解析了圆心角和圆周角定理。此外,探讨了圆内接四边形的性质,切线的判定与性质,以及三角形内切圆。最后,涉及了正多边形与圆的关系以及扇形的几何特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

圆的重点和难点解析 fc1da54ffe63619598a2a938ade17766.gif

d6233eb0d028198cb092e5e7f1a725d9.png

8d5350fd1ea1a70f17ca73844f16df83.png

1、圆:

(1)圆可以看作线段OA绕着一个端点O旋转一周,另一个端点A所形成的的图形。——运动的角度

点O为圆心,OA为半径   记作⊙O

658ed2b1dcf4e96cc9414803f3e61960.png

(2)圆可以看作到定点的距离等于定长的点的集合。——集合的角度

         定点——圆心          定长——半径

2、弦:连接圆上任意两点的线段叫做弦。

               经过圆心的弦叫做直径。

3、弧:圆上任意两点间的部分叫做圆弧,简称弧。

            圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。

4、优弧和劣弧:小于半圆的弧叫做劣弧;大于半圆的弧(用三个字母表示)叫做优弧。

5、等弧:在同圆或等圆中,能重合的弧叫等弧。

6、对称性:既是轴对称图形又是中心对称图形。

832a655173feac6f2c4ed01f6247e0dd.png

重点:应用是圆中的半径所构成等腰三角形的进行计算。

典型题目:

如图,⊙O的直径BA的延长线与弦DC的延长线交于点E,且CE=OB,

已知∠DOB=72°,求∠E

4c006266131a57a9b688920d409611d3.png

解:连接OC,设∠E=x

∵ CE=OB,OC=OB

∴ ∠E= ∠1=x

∵∠2= ∠E+ ∠1=2x

∵ OC=OD

∴ ∠2= ∠D=2x

∵ ∠DOB=∠ E+∠D=3x= 72°

∴x=24°

∴ ∠E= 24°

教学重点:

d7b418cf298108eb297f0cb81aa6b3be.png

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

eeca8be7074952339f7eefb840f6342f.png

明确垂径定理的一个推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

a788f779c8ac565b05680fc52f3d7e02.png

根据垂径定理与推论可知对于一个圆和一条直线来说。如果具备上述五个条件中的任何两个条件都可以推出其他三个结论。

      垂径定理及其推论反映了圆的重要性质,是圆的轴对称性的具体化,也是证明线段相等、角相等、垂直关系的重要依据。

典型习题:eb94afaddaf208f077bac9a4e688fd05.png

0763c97958a155b7cd2de54002a00d8a.png323cfb1f894a4abe68b8e173dd5edc16.png

b071493d8ed8d824e2c8c94f275e7d57.png

501ecb3d378667a4f5f42f33d29eabbd.png

难点:

8312477a9ab5f2c3d1e827c3294d7379.png

易错点:

1494db3c59717edcbb8c2c0ff9544fc0.png

715d4a64f726149cc5bffc78ea235572.png

7e3606b217658b36949827acb112a7ff.png

1、定义:顶点在圆心的角叫做圆心角。(如:∠AOB和∠A‘OB’ )

2、圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.

19e800c27b3e95a5148a28ac9c229620.png

0d237d68713ba92a251b069a809af372.png

3、推论:同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等.

c4454fd92dc130dcb01f711b76d20c13.png

典型习题:

6ec7637fb679112495de7a00b6c7be7e.png

491f2cda4a2864053ac4f6f66cfc1df8.pngfa2e0325de6e57233264778318fd88c8.png

c8428f0227e3ede3c9e0e821857c3bc4.png

1、定义:顶点在圆上,并且两边都和圆相交的角叫圆周角.

2、圆周角定理:一条弧所对的圆周角等于它所对圆心角的一半. ∠AOB=2∠ACB

94d41b9ae9307c1a4dcb7b4732515bcf.png

3、推论1:同弧或等弧所对的圆周角相等.∠ACB=∠AC’B

d685c9c503d52de6641c9983ef505228.png

推论2:半圆(或直径)所对的圆周角是直角.

e00884d4956b9aa0a9014c772d81d3b5.png

推论3:90°的圆周角所对的弦是直径

6cd90c4ce95fc724459a1d24d3fc87b1.png

e5097407c2b15f142f3d1ae384c8d8c6.png

典型习题:

2b5f5cefa8d28724e056b81c6d451045.png

5c46667414b79c77ad90f4e62eea8eef.png

4、圆内接多边形:如果一个多边形的所有顶点都在一个圆上,这个多边形

叫做圆内接多边形,这个圆叫做这个多边形的外接圆

07a76cc7da04dd0b2d9d34789131b394.png

5、圆内接四边形:圆内接四边形的对角互补。

∵圆内接四边形ABCD

∴∠ABC+∠ADC=180°

圆内接四边形的外角等于内对角

∵圆内接四边形ABCD

∴∠ADE=∠B

341fb584bd6a591e4f7b2bbf27c0ab5f.png

典型习题:

622a81d572c1e15e657abef51ac3aee7.png

bf3b5552e2e0fe00e40c1468a35cfe78.png

01c7d988862be667e923fa6b23b46c60.png

aae75e740fc50f637411afc32a97277a.png

设⊙O的半径为r,点到圆心的距离为d,则有:

fcbf89df824efeed13300f21d4c0065a.png

355a9251a1b96ca1208dae95a132791d.png

典型习题:

如图,Rt△ABC中,∠C=90°,CD⊥AB于D,AC=3,AB=5,以C为圆心,AC长为半径画圆,试指出A、B、D与⊙C的关系。

3a91fc7b29474482bb0eaeaa4a9ab06a.png

解:∵ ∠C=90°,AC=3,AB=5

∴由勾股定理得BC=4

∵CD⊥AB于D

∴由△ABC面积得CD=2.4

∵以C为圆心,AC长为半径画圆

∴AC= r =3 ,点A在圆上

   BD=4﹥r,点B在圆外

   CD=2.4 ﹤ r,点D在圆内

3d0ed1120502d5fb346bda4c8255abdb.png

0cd0b764624e20657f6aa3eae7354944.png

典型习题:

在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与直线AB有怎样的位置关系?为什么?

 (1)r=2cm;

 (2)r=2.4cm

 (3)r=3cm。

3a91fc7b29474482bb0eaeaa4a9ab06a.png

解:∵ ∠C=90°,AC=3cm,AB=5cm

∴由勾股定理得BC=4cm

∵ CD⊥AB于D

∴由△ABC面积得CD=2.4cm

∵以C为圆心

∴圆心到直线AB的距离d=CD=2.4cm

∴ r=2cm时,d﹥r,⊙C与直线AB相离;

   r=2.4cm时,d=r,⊙C与直线AB相切;

   r=3cm时,d﹤r,⊙C与直线AB相交。

227f1a83361cbbfcb43b13908557dd58.png

f6a8039f0eda1580fd2ad7cd25958edd.png

2f65e6235040a8c1a310bc81121044a6.png

6、切线的判定定理:经过半径的外端点并且垂直于这条半径的直线是圆的切线。

∵OA是半径,       

    OA⊥m于点A

∴直线 m是⊙O的切线

典型习题:b59b173b2a4b2459b3d397841bf66842.png

43ccac7dcbce1fc02939a4396a68a5a0.png

7、切线的性质定理:圆的切线垂直于过切点的半径.

∵直线 m切⊙O于点A

∴OA⊥直线 m

a1697c89b4d183cdb9db2d35715e0304.png

归纳:切线的判定方法有三种:

①直线与圆有唯一公共点;

②直线到圆心的距离等于该圆的半径;

③切线的判定定理.

8、切线长的定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,

叫做这点到圆的切线长。(PA、PB)

258e7816831bbaa1f6fd8ad829c260f2.png

9、切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,

这一点和圆心的连线平分两条切线的夹角。

∵PA,PB是圆的切线

∴PA=PB,

      ∠APO=∠BPO

9c16eb225e3459e1b0cc28c939366d90.png

切线长定理的拓展结论:

∵PA,PB是圆的切线

∴PA=PB,

  ∠APO=∠BPO

∴OP ⊥AB

 ∴AE=BE

M为弧AB中点

典型习题:

0f8d77d2d18d33958ccbe4413420c1b3.png

10、三角形内切圆:与三角形各边都相切的圆叫做三角形的内切圆。

0ea33cc969ebd56d1d355cb6f23ca8b5.png

三角形内切圆的圆心O叫做三角形的内心,内心是三角形三条角平分线的交点,它到三边距离相等。

结论:

4508c68c3f6f201d7503781ef12ee13b.png

41076acc653b8fd3616afc7e5155b78e.png

典型习题:

1、△ABC中,⊙O是△ABC的内切圆,切点是D,E,F,AB=12,BC=10,AC=8,求AD、BE、CF

0aa668560fa3a53ada62cad4e2e9bdfd.png

解:设AD=x

∵ ⊙O是△ABC的内切圆

∴AD=AF=x

    BD=BE=12-x

    CE=CF=8-x

∴BC=BE+CE=12-x+8-x=10

∴x=5

∴AD=5,BE=12-5=7,CF=8-5=3

2、Rt△ABC中,∠C=90°,⊙O是△ABC的内切圆,切点是D,E,F,AB=13,BC=5,AC=12,求⊙O半径。

解:方法1:

87665bce4b220551e632b31ffdc2e018.png

eb13377fc1f8063ec0ccf8ea002ee58f.png

方法2:

cfbcebc2a20f51bee51feba156d157d3.png

b2353b1084498c67eec87dde5937ced4.png

3de1b1af37569a01f76bee9ea825caea.png

(1)定义:各边相等,各角也相等的多边形叫做正多边形。

(2)正n边形与圆有密切的关系:把圆分成n等分(n≥3),顺次连接各分点所得的多边形是这个圆的内接多边形。

8ac68cf43f732d807261ae0e219c2aaf.png

(3)正多边形的中心:正多边形的外接圆的圆心.

(4)正多边形的半径:外接圆的半径R(OA和OB)

(5)正多边形的边心距:中心到正多边形的一边的距离r(OE)(内切圆半径)

(6)正多边形的中心角:正多边形的每一条边所对的圆心角ɑ( ∠ AOB)

(7)相关计算公式:

设边长为a,周长为L

36fba0f01f1223a5db75007dd23703d3.png

a0f8de4ec264ac452a393a23efdf7a59.png

典型习题:

1、已知等边△ABC的半径为2,求它的边心距、边长,周长、面积。

61f8f6de38d5d24407a27e6eb82cdd4d.png

15e7f73be3300854e05defa1e6b12b0d.png

2.已知正四边形的边长为2,求它的外接圆的半径、内切圆半径、周长、面积。

b3500019687838c1817603500f6fb30b.png

e39953c651195e5dab0bcba805bd7811.png

3.已知六边形的边心距为 2cm,求它的边长、外接圆的半径、周长、面积。

7450255f7430e4b6e8dea9c902bf0975.png

4dc2b2ec277fbd9b844ee81487730175.png

难点:求半径相等的正三角形、正四边形、正六边形的面积比。

26d10218ad489897cdb10f145084f7ab.png

a0e28c7ca049c118cb9318c96a432c58.png

f71a5663401af7161850d4d8d40b257a.png

ff95973970c445bd86b9d9fb20484828.png

b2491489ff20453e4eb4c8bd5b0c8629.png

典型习题:

1.已知:扇形的圆心角为150°,半径为3,求扇形的弧长。

709e85adedd576cacc523eb38e9893b5.png

易错点:

2.已知:扇形的弧长为6π ,圆心角为120°,求扇形的面积。

407e3efdc5e62cc0ea756843a894076d.png

3.一个扇形的弧长是6π ,面积是12π ,求扇形的圆心角。

cb5e5e3614bd2e8c82a824d5e81e0974.png

19c5fbb2624197b164b8da7c1233045e.png

248a9895c36e3eb68b5de0771ebfe998.png

(1)圆锥的侧面展开图是一个扇形。

(2)母线:这个扇形的半径(圆锥有无数条母线)

(3)圆锥底面圆周长:这个扇形的弧长

(4)圆锥的高:连结顶点与底面圆心的线段叫做圆锥的高h

                   h2+r2=R2

(5)圆锥的侧面积:

  S侧= 1/2母线长×底面圆的周长

     = 1/2R ×2πr= πrR

(6)圆锥的表面积:

  S表=S侧+S底=πrR+πr2

典型习题:

如果圆锥的侧面积为20π平方厘米,它的母线长为5厘米,求圆锥的底面半径.

cbd706f6d369551517c5d35a1f1665f8.png

a029e0710a2f8bed6255ec2e86d14961.png

一审:三班黎昌翰、张潇博、郭煜航;二审:四班曹洛萌、邓雨含、王涵。

感谢六位小朋友。

有趣的数学在等你 f26b0eedb262a753185218a0bf673f50.png长按扫码关注
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值