【线性代数公开课MIT Linear Algebra】 第十六课 Ax=b的解、最小二乘法与矩阵

本系列笔记为方便日后自己查阅而写,更多的是个人见解,也算一种学习的复习与总结,望善始善终吧~

基本子空间与投影矩阵


上一节课我们已经了解了投影矩阵 projection matrix, P=A(ATA)1AT
结合我们过去学习到的四个基本子空间的内容,对于Pb即b的投影:
- 若b在A的column space 则其投影为其本身b
- 若b垂直于A的column space则其投影为一个点,没有长度,为0

这里写图片描述
这是一张很重要的图片,向量b的投影在A 的column space,error vector的投影在left null space上,我们知道P,可以将b 投影到p,那么一个什么样的投影矩阵把b 投影到了e?因为column space与left null space正交补,所以他们共同组成了整个空间,I 的column space就是整个空间,IP就是把b投影到e的矩阵,它和P有意义的性质。

最小二乘 least square


这里写图片描述
继续上一节课的内容,找到过三个点的直线就是解三个方程,但此方程无解,此时我们要找到最接近的解“最优解”,我们要使得解最优即误差最小,定义误差为Axb=e的模长的平方即Axb2=e2=e21+e22+e23
这里使用平方的原因一是排除开根号带来的非线性运算,一是方便利用偏导数求解最小值。所以这里如果使用偏导数我们也能得到关于最优解的方程,用矩阵的方法求解
Ax^=Pb
得到的方程是一样的,求解即可得出结果
我们脑海中要有两张图:

  • 一个是我们要拟合的直线的那张图,各个点在我们得到的直线上的投影为p,偏差为e。
  • 另一个是之前我们的column space与left null space的图,b向量的投影p向量在column space而e 向量在left null space,二者正交

证明ATA可逆

求解ATAx^=ATb时,方程有解的条件为ATA可逆,实际上只有当A的column vector线性无关时可逆,求证:
要证明ATA可逆,即证ATAx=0时,x只能为零向量
两边同乘xT
xTATAx=0
(Ax)T(Ax)=0
Ax=0,由于A中各列线性无关
x=0

最后老师引入标准正交向量组:它们肯定线性无关

PS:另一位仁兄的笔记
http://blog.csdn.net/suqier1314520/article/details/13759193

转载于:https://www.cnblogs.com/ThreeDayMemory/p/5958703.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值