Nvidia GPU 算力查询

本文汇总了多种NVIDIA GPU型号及其对应的计算能力版本,涵盖了从Tesla系列专业级显卡到GeForce系列消费级显卡,以及部分移动端和嵌入式设备的GPU。通过此表可以快速了解不同GPU的计算能力等级。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

GPUCompute Capability
Tesla K803.7
Tesla K403.5
Tesla K203.5
Tesla C20752.0
Tesla C2050/C20702.0
Tesla M405.2
Tesla K803.7
Tesla K403.5
Tesla K203.5
Tesla K103.0
Tesla M20xx2.0
Quadro M6000 24GB5.2
Quadro M60005.2
Quadro K60003.5
Quadro M50005.2
Quadro K52003.5
Quadro K50003.0
Quadro M40005.2
Quadro K42003.0
Quadro K40003.0
Quadro M20005.2
Quadro K22005.0
Quadro K20003.0
Quadro K2000D3.0
Quadro K12005.0
Quadro K6205.0
Quadro K6003.0
Quadro K4203.0
Quadro 4103.0
Quadro Plex 70002.0
Quadro K6000M3.0
Quadro M5500M5.0
Quadro K5200M3.0
Quadro K5100M3.0
Quadro M5000M5.0
Quadro K500M3.0
Quadro K4200M3.0
Quadro K4100M3.0
Quadro M4000M5.0
Quadro K3100M3.0
Quadro M3000M5.0
Quadro K2200M5.0
Quadro K2100M3.0
Quadro M2000M5.0
Quadro K1100M3.0
Quadro M1000M5.0
Quadro K620M5.0
Quadro K610M3.5
Quadro M600M5.0
Quadro K510M3.5
Quadro M500M5.0
NVIDIA NVS 8105.0
NVIDIA NVS 5103.0
NVIDIA NVS 3152.1
NVIDIA NVS 3102.1
NVS 5400M2.1
NVS 5200M2.1
NVS 4200M2.1
NVIDIA TITAN X6.1
GeForce GTX 10806.1
GeForce GTX 10706.1
GeForce GTX 10606.1
GeForce GTX TITAN X5.2
GeForce GTX TITAN Z3.5
GeForce GTX TITAN Black3.5
GeForce GTX TITAN3.5
GeForce GTX 980 Ti5.2
GeForce GTX 9805.2
GeForce GTX 9705.2
GeForce GTX 9605.2
GeForce GTX 9505.2
GeForce GTX 780 Ti3.5
GeForce GTX 7803.5
GeForce GTX 7703.0
GeForce GTX 7603.0
GeForce GTX 750 Ti5.0
GeForce GTX 7505.0
GeForce GTX 6903.0
GeForce GTX 6803.0
GeForce GTX 6703.0
GeForce GTX 660 Ti3.0
GeForce GTX 6603.0
GeForce GTX 650 Ti BOOST3.0
GeForce GTX 650 Ti3.0
GeForce GTX 6503.0
GeForce GTX 560 Ti2.1
GeForce GTX 550 Ti2.1
GeForce GTX 4602.1
GeForce GTS 4502.1
GeForce GTS 450*2.1
GeForce GTX 5902.0
GeForce GTX 5802.0
GeForce GTX 5702.0
GeForce GTX 4802.0
GeForce GTX 4702.0
GeForce GTX 4652.0
GeForce GT 7403.0
GeForce GT 7303.5
GeForce GT 730 DDR3,128bit2.1
GeForce GT 7203.5
GeForce GT 705*3.5
GeForce GT 640 (GDDR5)3.5
GeForce GT 640 (GDDR3)2.1
GeForce GT 6302.1
GeForce GT 6202.1
GeForce GT 6102.1
GeForce GT 5202.1
GeForce GT 4402.1
GeForce GT 440*2.1
GeForce GT 4302.1
GeForce GT 430*2.1
GeForce GTX 9805.2
GeForce GTX 980M5.2
GeForce GTX 970M5.2
GeForce GTX 965M5.2
GeForce GTX 960M5.0
GeForce GTX 950M5.0
GeForce 940M5.0
GeForce 930M5.0
GeForce 920M3.5
GeForce 910M5.2
GeForce GTX 880M3.0
GeForce GTX 870M3.0
GeForce GTX 860M3.0/5.0(**)
GeForce GTX 850M5.0
GeForce 840M5.0
GeForce 830M5.0
GeForce 820M2.1
GeForce 800M2.1
GeForce GTX 780M3.0
GeForce GTX 770M3.0
GeForce GTX 765M3.0
GeForce GTX 760M3.0
GeForce GTX 680MX3.0
GeForce GTX 680M3.0
GeForce GTX 675MX3.0
GeForce GTX 675M2.1
GeForce GTX 670MX3.0
GeForce GTX 670M2.1
GeForce GTX 660M3.0
GeForce GT 750M3.0
GeForce GT 650M3.0
GeForce GT 745M3.0
GeForce GT 645M3.0
GeForce GT 740M3.0
GeForce GT 730M3.0
GeForce GT 640M3.0
GeForce GT 640M LE3.0
GeForce GT 735M3.0
GeForce GT 635M2.1
GeForce GT 730M3.0
GeForce GT 630M2.1
GeForce GT 625M2.1
GeForce GT 720M2.1
GeForce GT 620M2.1
GeForce 710M2.1
GeForce 705M2.1
GeForce 610M2.1
GeForce GTX 580M2.1
GeForce GTX 570M2.1
GeForce GTX 560M2.1
GeForce GT 555M2.1
GeForce GT 550M2.1
GeForce GT 540M2.1
GeForce GT 525M2.1
GeForce GT 520MX2.1
GeForce GT 520M2.1
GeForce GTX 485M2.1
GeForce GTX 470M2.1
GeForce GTX 460M2.1
GeForce GT 445M2.1
GeForce GT 435M2.1
GeForce GT 420M2.1
GeForce GT 415M2.1
GeForce GTX 480M2.0
GeForce 710M2.1
GeForce 410M2.1
Tegra X15.3
Tegra K13.2
Jetson TK13.2

转载于:https://www.cnblogs.com/punkcure/p/7977864.html

<think>好的,用户想了解如何进行GPU测试以及相关的工具和方法。首先,我需要回忆一下之前提供的引用内容,看看有没有相关的信息。 引用中提到了几个工具,比如FurMark和gpu_burn。FurMark主要是用来做压测试的,而gpu_burn可以同时测试多个GPU,打满使用率和显存。另外,麒麟990的测试案例提到了CPU、GPU和AI的理论测试,不过实际体验可能有差距。这说明测试通常包括理论测试和实际应用测试两部分。 用户的问题可能分为两部分:一是如何测试GPU,二是需要哪些工具和方法。我需要先解释常见的测试指标,比如浮点运(FLOPS)、显存带宽、实际应用性能(如深度学习、图形渲染)等。然后分步骤介绍使用工具的方法,比如FurMark用于稳定性测试,gpu_burn用于多卡压测试,还有像CUDA-Z、3DMark这样的工具可能也相关。 需要确保提到的工具在引用中有支持。例如,引用[2]和[5]提到了gpu_burn的使用方法,引用[1][4]详细说明了FurMark作为压测试工具。引用[3]中的麒麟990测试可能涉及SPECviewperf或AI基准测试工具,但具体工具没有提到,可能需要补充常见的行业标准工具如Geekbench、Unigine Heaven等。 另外,用户可能对测试步骤和结果分析感兴趣,比如如何解读测试结果,判断性能是否正常,或者如何优化硬件配置。引用[4]提到通过测试结果优化系统配置和提高硬件寿命,这部分可以作为注意事项或测试后的步骤。 需要区分测试和压测试的不同,测试更关注性能指标,而压测试主要检验稳定性。但有些工具可能同时提供两者的功能,比如gpu_burn在压测试中也能反映情况。 最后,按照用户的要求,生成相关问题,可能涉及工具选择、测试指标、结果分析、应用场景等。</think>### GPU测试方法及工具指南 --- #### **一、测试指标说明** GPU测试主要关注以下核心指标: 1. **浮点运**(FLOPS):衡量GPU每秒执行的浮点运次数,例如单精度(FP32)、双精度(FP64)或混合精度(如Tensor Core的FP16/INT8)[^3]。 2. **显存带宽与容量**:显存速度影响数据传输效率,显存容量决定可处理的数据规模。 3. **实际应用性能**:如深度学习训练/推理速度、图形渲染帧率(FPS)、科学计效率等。 --- #### **二、常用测试工具及方法** 以下工具可覆盖测试与稳定性验证: ##### **1. 理论测试** - **CUDA-Z** 用于检测GPU基础参数(CUDA核心数、显存带宽)和实时计性能,支持单/双精度浮点运测试。 ```bash # 安装后直接运行即可查看实时数据 ``` - **Geekbench** 提供跨平台的GPU OpenCL/Vulkan基准测试,量化GPU在通用计任务中的表现。 ##### **2. 深度学习性能测试** - **NVIDIA NGC Benchmarks** 包含ResNet、BERT等模型的预配置测试脚本,直接反映AI。 ```bash # 示例:运行ResNet-50训练测试 ngc batch run --name "resnet-test" --image "nvidia/pytorch:20.03" --command "python train.py" ``` - **MLPerf** 行业标准AI基准测试套件,涵盖图像分类、目标检测等任务,需按规范配置测试环境。 ##### **3. 压测试与稳定性验证** - **FurMark** 通过高强度渲染负载测试GPU稳定性,监测温度与功耗是否正常[^1][^4]。 ```bash # 运行后选择“GPU Stress Test”模式,观察是否出现画面卡顿或驱动崩溃 ``` - **gpu_burn** 开源工具,支持多卡并行测试,可打满GPU使用率和显存[^2][^5]。 ```bash # 测试双卡(ID 0和1),持续100秒 export CUDA_VISIBLE_DEVICES=0,1 ./gpu_burn 100 ``` ##### **4. 图形渲染性能测试** - **3DMark/Unigine Heaven** 模拟游戏或专业图形场景,测试帧率(FPS)和渲染延迟。 - **SPECviewperf** 针对专业图形设计(如CAD、医学成像)的行业标准测试工具。 --- #### **三、测试步骤建议** 1. **基础参数检查** 使用`nvidia-smi`或CUDA-Z确认GPU型号、驱动版本、CUDA支持状态。 2. **理论测试** 运行CUDA-Z或Geekbench获取基准数据,对比官方规格。 3. **实际场景验证** 根据应用场景选择MLPerf(AI)、3DMark(图形)等工具。 4. **稳定性压测试** 使用FurMark或gpu_burn持续运行20-30分钟,确保无降频或报错。 --- #### **四、注意事项** - **温度监控**:使用GPU-Z或HWMonitor实时监测温度,避免过热(通常<85℃为安全范围)。 - **结果对比**:将测试数据与同型号GPU的公开评测对比,如TechPowerUp或NVIDIA官方报告。 - **环境一致性**:关闭后台程序,确保测试期间无其他负载干扰。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值