NVIDIA英伟达GPU显卡算力一览(包含Tesla和GeForce、TITAN及RTX系列等)

本文汇总了截至2020年8月部分主流英伟达GPU的算力信息,特别关注那些适用于深度学习任务的显卡。通过本文,读者可以了解到如何查看GPU算力并判断是否适合运行神经网络。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参照不同型号的显卡的算力图 https://developer.nvidia.com/cuda-gpus#collapseOne

英伟达GPU算力一览

官方说明在GPU算力高于5.0时,此计算机可以用来跑神经网络,而在CSDN和网页上查找GPU算力时,没有一个比较全面的博客对目前的显卡算力做统计,而且英伟达官网链接打开真的谜一样,很慢或者直接打不开,所以用这篇博客记录一下截至到2020.8.27,一部分主流供深度学习的GPU的算力。
NVIDIA官方查找GPU算力的网址:https://developer.nvidia.com/cuda-gpus

<think>好的,用户想了解NVIDIA GPU的相关信息,包括介绍、技术参数应用场景。首先,我需要整理已有的引用内容,确保信息准确。引用[1]提到NVIDIA GPU广泛应用于深度学习、HPC图形计,技术参数部分可能需要详细展开。引用[2]指出架构演进类似Intel CPU,所以需要分代介绍架构,比如Fermi到Hopper。引用[3]介绍了CUDA核心的概念,以及A100H100的信息,这部分要重点强调。 接下来,用户需要技术参数,应该包括CUDA核心、显存、Tensor Core、FP32性能等。应用场景方面,需要覆盖深度学习训练、推理、HPC、图形渲染等。同时,用户可能想知道不同GPU型号的差异,比如A100H100的区别,或者消费级与计卡的不同。 要确保回答结构清晰,分点列出。需要检查是否有遗漏的重要参数,比如NVLink或PCIe版本,以及最新的架构特性。可能用户对如何选择适合自己需求的GPU感兴趣,但问题中没有直接提到,不过应用场景部分可以间接回答。 注意使用正确的LaTeX格式,比如技术参数中的数值可能需要用行内公式,但根据引用内容,可能不需要太多数学表达式。最后,生成的相关问题要围绕NVIDIA GPU的技术细节、比较应用,确保问题有针对性,帮助用户深入理解。</think>### NVIDIA GPU介绍与技术参数 #### 1. 核心架构与演进 NVIDIA GPU架构经历了多代革新,主要架构包括: - **Fermi**(2010):首个支持ECC显存与双精度计的架构[^2] - **Kepler**(2012):引入动态并行技术 - **Volta**(2017):首次集成Tensor Core - **Ampere**(2020):第三代Tensor Core与多实例GPU(MIG)技术 - **Hopper**(2022):支持Transformer引擎与NVLink-C2C互连[^3] #### 2. 关键参数指标 $$ \text{理论性能} = \text{CUDA核心数} \times \text{核心频率} \times 2\ (\text{每周期双指令}) $$ | 参数 | 说明 | |------|------| | CUDA核心 | 并行计单元,如A100含6912个CUDA核心 | | 显存带宽 | H100采用HBM3显存,带宽达3TB/s | | Tensor Core | 专用AI计单元,A100的TF32性能达312TFLOPS | | FP32性能 | RTX 4090达82.6 TFLOPS | #### 3. 应用场景 - **深度学习训练**:A100/H100支持大规模模型分布式训练[^1] - **科学计**:CUDA加速计流体学、分子动学模拟 - **实时渲染**:GeForce RTX系列支持光线追踪与DLSS技术 - **边缘计**:Jetson系列用于自动驾驶与机器人控制[^2] ```text 典型产品对比: 1. 计卡:A100(训练) / H100(大模型) 2. 消费级:RTX 4090(游戏/渲染) 3. 边缘端:Jetson Orin(嵌入式AI) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值