Rhinoceros犀牛的曲线称为Nurbs曲线(Non-Uniform Rational B-Splines),非均匀有理B样条。在如何绘制最简曲线前,首先应该掌握Rhinoceros犀牛曲线的基本概念:控制点、阶数、节点,(如下图所示)。
控制点:两个控制点是由控制线连接的,控制点左右两侧的曲线会随着控制点的移动发生变化;Rhinoceros犀牛曲线中有包括控制点和编辑点,控制点在曲线外,又称为外壳线,编辑点在曲线上。
阶数(Degree):又称为度数,是一种数学模型,这个指数决定了曲线的光顺程度。
节点:一般是曲线上的多余信息,控制点数减去阶数等于节点数;添加节点,控制点会增加,删除节点,控制点会减少。
1、什么是最简曲线?
最简曲线是一条Nurbs曲线的控制点数减去阶数的数值是1;这样的曲线只有在曲线的首端和末端分别有一个节点,中间没有节点,又称之为单跨距(英文单span)的曲线;节点是多余的信息,因为曲线的中间没有节点,这样的曲线是没有信息冗余的,(如下图所示)。
该条曲线是6个控制点,阶数是5,满足控制点数减去阶数的数值是1,是一条最简曲线,(如下图所示)。
2、如何绘制最简曲线?
绘制最简曲线的方法包括:控制点曲线画法和内插点曲线画法两种方法。两种方法我们都是以5阶为例。
1、控制点曲线画法:在控制点曲线命令栏(阶数(D)=)输入数值5并且在任一二维视图画曲线。鼠标点击2下会生成一条1阶2点的曲线;鼠标点击3下会生成一条2阶3点的曲线;以此类推直到鼠标点击6下以下都会生成相应阶数和点数的最简曲线,满足控制点数减去阶数的数值是1,(如下图所示)。
2、内插点曲线画法:内插点曲线(阶数(D)=)输入数值5,(节点(K)=)选择均匀 并且在任一二维视图画曲线。鼠标点击2下会生成一条5阶6点的曲线;鼠标点击3下同样会生成一条5阶6点的曲线;以此类推直到鼠标点击6下以下都是生成一条5阶6点的最简曲线,满足控制点数减去阶数的数值是1,(如下图所示)。