在当今数据驱动的商业环境中,企业经常面临跨团队数据共享的挑战,尤其是当数据分布在多个云账户时。本文针对一家使用AWS Lake Formation管理多账户数据湖的公司,探讨其数据科学团队如何以最小操作开销安全地与工程团队共享选择性数据。通过分析题目中的选项,我们将详细论述为什么使用Lake Formation基于标签的访问控制是最佳解决方案,并解释其实现方式和优势。以下案例是关于公司需要在多个AWS账户之间安全地共享选择性数据,并使用AWS Lake Formation管理数据湖,同时最小化操作开销。
一家公司在多个AWS账户中存储了几PB的数据。该公司使用AWS Lake Formation来管理其数据湖。该公司的数据科学团队希望安全地与其工程团队共享其账户中的选择性数据,用于分析目的。为了能以最小的操作开销满足这些要求,可以使用Lake Formation基于标签的访问权限来控制授权和授予跨账户工程团队账户的访问,因为利用Lake Formation的基于标签的访问控制,可以直接跨账户授权,无需数据复制或复杂IAM管理,通过标签自动化权限分配,从而最小化操作开销。
问题背景与要求
该公司在多个AWS账户中存储了几PB的数据,并依赖AWS Lake Formation构建和管理数据湖。数据科学团队需要从这些账户中选择性共享部分数据给工程团队,用于分析工作。共享过程必须确保安全性,同时最小化操作开销,包括避免数据迁移、减少手动配置和降低管理成本。
解决方案:Lake Formation基于标签的访问控制
利用Lake Formation的基于标签的访问控制(Tag-Based Access Control, TBAC)功能,直接实现跨账户数据共享。这种方法通过标签自动化权限管理,无需数据复制或复杂IAM配置,从而最小化操作开销。
对于多账户数据共享场景,通过Lake Formation基于标签的访问控制提供了最高效的解决方案。它消除了数据复制的成本、简化了权限管理,并利用自动化机制显著降低操作开销。相比之下,其他选项要么引入额外步骤,要么依赖复杂的手动配置,无法在安全性和效率之间取得平衡。因此,企业应优先采用这个解决方案来实现跨团队数据共享,从而加速数据分析流程,同时保持运营敏捷性。
解决方案实现步骤
-
标签定义与分配:
数据科学团队在源账户中为需要共享的数据资源(如S3桶或Glue表)添加标签。例如,可以为选择性数据添加标签键为SharingScope,值为Engineering的标签。标签分配可以通过AWS管理控制台、CLI或API完成,操作简单且可批量处理。 -
配置跨账户权限:
在Lake Formation中,数据管理员创建基于标签的访问策略。例如,定义一个策略,允许工程团队账户的特定用户或角色访问所有带有SharingScope: Engineering标签的资源。这可以通过Lake Formation的权限管理界面实现,只需指定目标账户和标签条件,无需在每个源账户中重复操作。 -
权限生效与验证:
一旦策略配置完成,工程团队账户的用户即可直接访问带标签的数据,而无需数据移动。Lake Formation会自动处理跨账户身份验证和授权。团队可以通过AWS服务如Athena或Redshift查询数据,确保共享过程安全且无缝。
为什么解决方案能最小化操作开销?
- 无需数据复制:避免了PB级数据的迁移,节省了网络带宽、存储成本和时间延迟。数据保留在原始位置,减少了数据一致性和版本控制问题。
- 简化权限管理:基于标签的访问控制集中化了权限分配,管理员只需定义一次标签策略,即可覆盖多个账户和资源。这消除了手动Grant命令或IAM角色管理的需要,降低了人为错误风险。
- 自动化与可扩展性:标签可以动态应用,例如通过AWS Lambda函数自动为新数据添加标签。当共享需求变化时,只需更新标签或策略,无需重构整个系统,从而支持企业级扩展。
- 安全性与合规性:Lake Formation内置了数据湖的安全机制,如细粒度访问控制和审计日志。基于标签的权限确保了最小特权原则,工程团队只能访问被标记的数据,符合安全最佳实践。
实际应用场景与最佳实践
在实际部署中,公司可以结合AWS Organizations和Lake Formation的多账户管理功能,进一步优化操作。例如:
- 使用AWS Organizations集中管理所有账户,并启用Lake Formation的跨账户共享功能。
- 定期通过AWS CloudTrail监控标签和权限变更,确保合规性。
- 为数据科学和工程团队提供培训,使他们能自主管理标签,减少IT支持负担。
1316

被折叠的 条评论
为什么被折叠?



