核密度中对窗框h的估计用R语言_密度泛函理论(二)

本文详细介绍了Kohn-Sham方程在密度泛函理论中的作用,以及如何通过局域密度近似(LDA)和广义梯度近似(GGA)来估算交换关联泛函。讨论了LDA在计算晶格常数、吸附能等方面的不足,并对比了GGA的改进。最后,概述了求解Kohn-Sham方程的自恰迭代法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分子模拟学习,请点击蓝字关注~4333357e58d935da37f8bdb0c9a9c645.png

b5ebdf3f0e40a1dfffd360a5c08ee7ad.png

(石墨烯的价带与导带,Materialstoday, Vol 10, 1-2, 2007)

在密度泛函理论的第一篇文章中,我们介绍了Kohn-Sham将多电子体系中的能量进行分解重组,最终建立了能量泛函。除了非关联动能项,核势能,Hartree能,交换关联能都表达成了电子密度的函数,而非关联动能项表达为非关联轨道波函数的泛函,如下式所示:

9d902562db9c3918fe90db24ad45f2c0.png

其中各项的表达式为:

4cb391d3bc22e11e64144464f5b9986a.png

af2ad5347623092bd2aa68f1a5610ede.png

8ba304d04c770a74dfc4b9b53536748d.png

bc34beb645d89dbf363bef4f3108c8f0.png


b5f24fad921be65e0fc0cc3f62302ade.pngKohn-Sham方程

下面我们需要求解能量泛函的最小值,也就是体系的基态,在求解能量最小值的时候,需要注意到系统的波函数需要满足正交关系,因此该极值为条件极值。正交限制条件为:

7aeb069516a2832bdfd2fe7ad3ace340.png

利用拉格朗日乘子法求解极值:

da457f23e2438f21098a637e41329dc5.png

展开上式,代入各项的变分:

ef28f0161ed7de7f6a631a75d62772b0.png

f5a0a04d1eebcb53b95a552247118a89.png

e59ded6e285df9c6332c292cfb5203bb.png

8c2dee4fa76732892f477972a34e6bcf.png

最终,欲使所构造的拉格朗日泛函的变分为0,需要满足:

44be4a097eb335642e354f80fa5053d5.png

其中拉格朗日乘子是由于各个轨道的正交化而引入的,因此可以看做不同轨道的特征值,也就是各个轨道的特征能量,因此Kohn-Sham方程最终化简为:

51cabdb114c41c296b1872d32925b00d.png

86fb4524581b5e827c1349a57a3aa5b4.png

上式就是著名的Kohn-Sham方程,在利用密度泛函理论进行计算的时候,实际的计算都是根据辅助哈密顿量HK-S来进行计算的。

b5f24fad921be65e0fc0cc3f62302ade.png交换关联泛函

利用Kohn-Sham方程求解多电子体系的能量及电子密度的一个重要的前提是:已知的交换关联泛函Uxc。在密度泛函理论中,所有的量在理论上都是精确的,只有交换关联泛函采用的是近似方法得到的。通常的近似方法有局部密度近似(LDA)广义梯度近似(GGA)

1. 局域密度近似

51c0af30aec71e25582b4c707167ed50.png

(Book:Computational Materials Science, June Gunn Lee)

局域密度近似的主要思想是,电子在均匀场中将表现为均匀的电子密度,其交换关联能是可以用量子蒙特卡洛算法精确计算的,当外界势场变化幅度不剧烈时,在局域采取均匀的电子密度来计算交换关联能。

在均匀场中,交换能的表达式为:

79d569ee459a5910f83ccd88bd6604a8.png

关联能的表达式为:

e64fe23611f883288907c543d85825ed.png

其中Ci都为拟合的常数,rs是与电子密度有关的量,表达式为:

b213f5e7ad66fe5c0115cf88442fbe77.png

最终交换关联能都表达为电子密度的函数,那么就可以代入Kohn-Sham方程进行计算了。

3b8f5ce3d93f98723cd50b07132b6a3d.png

利用局域密度近似也可以处理考虑电子自旋的电子密度:

2cf33b4584e12f0096d2de3575089dc3.png

局域密度近似LDA方法在早期的DFT计算中被广泛使用,但它在计算下列问题时存在一定的误差:

1、计算晶格常数时会通常偏小,因此体系的吸附能和体积模量通常偏大。

2、计算吸附能时偏高,计算扩散能垒时偏低。

3、计算电子动量和角动量时偏低。

4、计算能带带宽时,偏低超过50%,有时甚至根本得不到能带带宽。

5、对于过渡态金属的计算不准确,因为这些金属核外电子密度变化剧烈。例如利用LDA计算Fe(铁磁性)和Cr(反铁磁性)两种物质时,最终得到的结果都是非磁性的。

6、对于有氢键和范德华力作用的体系的计算也不精确。

为了获得更精确的交换关联泛函,研究者们提出了广义梯度近似的交换关联泛函。

2. 广义梯度近似

在LDA方法中,交换关联泛函仅为电子密度的函数,而在GGA近似方法中,交换关联泛函是电子密度和电子密度梯度的函数。

291683f64a64c47115460d1fc863eb7c.png

(交换关联泛函LDA和GGA的对比)

GGA形式的交换关联能可以表达为:

c8095b703f04fb568dc68d4124a4f441.png

考虑自旋形式的交换关联能的表达式为:

7424c9856d3034063b06d9589ec67658.png

在实际应用中,GGA的表达式其实是直接在LDA的表达式中增加一项与电子密度梯度有关的函数,如下式所示:

898ae476ed8f5a45051f28f67589bfb7.png

其中:

1652fcda560b674796df92a70803e6fb.png

通常s的取值范围为0~3,而F(s)的取值范围为1~1.6。关于F的表达式有许多形式的GGA交换关联泛函,其中比较流行的有PW91PBE两种类型,分别是Perdew和Wang 1992年和Perdew 1996年提出来的。其中PBE是改进的PW91版本的交换关联泛函,也是目前使用最广泛的,兼顾精度与效率的泛函。下面是利用PBE计算常见材料额晶格常数和体积模量。

73b7b1e874a41e35a57cc405e8048b85.png

GGA几乎使用于所有的系统,对于结构参数的误差通常为1~3%。但是GGA在计算能带带宽的时候,仍然小于实际值超过50%。造成能带带宽估计偏小的原因有两个:首先,在Kohn-Sham方法中,计算带宽的方法与定义有出入,带宽的定义为:

3295da85b1ef92e4d3dfca76eb62a0e3.png

而在Kohn-Sham方法中计算的带宽其实是:

edc301a96f5741c5a89de830f2b5b045.png

在Kohn-Sham方法中并没有真实的增加或去除电子,所以更高能级n+1轨道的能量也是由n个电子估计的,因此能带带宽偏小。

第二个原因是源于交换关联泛函的连续性,而真实的交换关联泛函应该是不连续的。最终导致同一轨道上相同自旋的电子相互作用不能完全被排除,这就导致了共价带能量的升高,导带能量的降低,所以能带带宽就降低了。在H-F方法中,电子的关联效应可以有Slater行列式完全消除,因此由H-F方法计算的能带带宽通常偏大。

校正能带带宽计算的方法大致有三种:

1、使用混合H-F方法的交换关联泛函,

2、将能量用格林函数表述,利用多体摄动理论校正关联项;

3、使用其他关联项校正的方法。

在实际的DFT计算中,关联密度泛函往往是合并在赝势函数中的,在选择赝势的时候也就选择了交换关联泛函。

b5f24fad921be65e0fc0cc3f62302ade.pngKohn-Sham方程的求解

求解K-S方程通常采用自恰迭代法,如下图所示:

a99d408bcef835c202bc48719447840a.png

用于初始迭代的波函数是稍微多于n/2个的平面波以及由赝势函数提供的独立的原子周围的电子密度,然后不断代入K-S方程进行迭代,直到能量收敛至基态,达到停止的判断标准,通常为10^-5~10^-4 eV.

b9db1d68813cd9b871b90064966e1e5f.png

分子模拟交流学习,请扫码关注ff2c21aad57e8f97ef416247e9120e63.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值