【论文学习】Is the deconvolution layer the same as a convolutional layer

结合上升采样upsample和卷积操作。Sub-piexl convolution。

Efficient Sub-pixel-convolutional-layers。

 

LR network,即低分辨卷积网络。在upsample的过程中对图像就进行了卷积。

HR network,高分辨卷积网络,一般HR network是现将低分辨力的图像进行二次插值变换后然后对变换后的图像再进行卷积网络。像HR network是先将图像进行upsample后才进行卷积。

得到r^2个通道特征图然后通过周期筛选(periodic shuffing)得到这个高分辨率的图像,其中r为upscaling factor,也就是图像扩大倍率。

 

 

ESPCN:2016年9月

《Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network》

论文链接:https://arxiv.org/abs/1609.05158 
全文翻译:http://www.jianshu.com/p/9d654bdbd5e2 
代码链接(tensorflow):https://github.com/Tetrachrome/subpixel

 

 

 

【转载自】

一边Upsample一边Convolve:Efficient Sub-pixel-convolutional-layers详解 - bbbeoy的专栏 - CSDN博客 https://blog.csdn.net/bbbeoy/article/details/81085652

[1609.07009] Is the deconvolution layer the same as a convolutional layer? https://arxiv.org/abs/1609.07009

A guide to convolution arithmetic for deep  learning https://arxiv.org/pdf/1603.07285v1.pdf

Efficient Sub-Pixel Convolutional Neural Network - Shwan_ma的博客 - CSDN博客 https://blog.csdn.net/shwan_ma/article/details/78440394

 

转载于:https://www.cnblogs.com/wxl845235800/p/10844715.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值