poj3304计算几何直线与线段关系

Given n segments in the two dimensional space, write a program, which determines if there exists a line such that after projecting these segments on it, all projected segments have at least one point in common.

Input

Input begins with a number T showing the number of test cases and then, T test cases follow. Each test case begins with a line containing a positive integer n ≤ 100 showing the number of segments. After that, n lines containing four real numbers x1y1x2y2 follow, in which (x1, y1) and (x2, y2) are the coordinates of the two endpoints for one of the segments.

Output

For each test case, your program must output "Yes!", if a line with desired property exists and must output "No!" otherwise. You must assume that two floating point numbers a and b are equal if |a - b| < 10-8.

Sample Input

3
2
1.0 2.0 3.0 4.0
4.0 5.0 6.0 7.0
3
0.0 0.0 0.0 1.0
0.0 1.0 0.0 2.0
1.0 1.0 2.0 1.0
3
0.0 0.0 0.0 1.0
0.0 2.0 0.0 3.0
1.0 1.0 2.0 1.0

Sample Output

Yes!
Yes!
No!
一开始看不懂题意只好搜题意,看懂了题意之后还是花了两个多小时wa了七遍,只好看题解,可能是精度的地方写搓了>.<坑爹啊
叉积判断线段的两端点是不是在直线的两侧
#include<map>
#include<set>
#include<list>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define pi acos(-1)
#define ll long long
#define mod 1000000007

using namespace std;

const double eps=1e-8;
const int N=1005,maxn=100005,inf=0x3f3f3f3f;

struct point{
    double x,y;
};
struct line{
   point a,b;
}l[N];

int n;
double mul(point p,point u,point v)
{
    return (u.x-v.x)*(p.y-u.y)-(u.y-v.y)*(p.x-u.x);
}
bool ok(point u,point v)
{
    if(fabs(u.x-v.x)<eps&&fabs(u.y-v.y)<eps)return 0;
    for(int i=0;i<n;i++)
        if(mul(l[i].a,u,v)*mul(l[i].b,u,v)>=eps)
           return 0;
    return 1;
}
int main()
{
    int t;
    cin>>t;
    while(t--){
        cin>>n;
        for(int i=0;i<n;i++)
            cin>>l[i].a.x>>l[i].a.y>>l[i].b.x>>l[i].b.y;
        if(n<=2)
        {
            cout<<"Yes!"<<endl;
            continue;
        }
        bool flag=0;
        for(int i=0;i<n&&!flag;i++)
        {
            if(ok(l[i].a,l[i].b))flag=1;
            for(int j=i+1;j<n&&!flag;j++)
                if(ok(l[i].a,l[j].a)||ok(l[i].a,l[j].b)||ok(l[i].b,l[j].a)||ok(l[i].b,l[j].b))
                   flag=1;
        }
        if(flag)cout<<"Yes!"<<endl;
        else cout<<"No!"<<endl;
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/acjiumeng/p/6682251.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值