Sylow定理

本文介绍了Sylow定理,包括Sylow第一定理(群存在指定阶子群)、Sylow第二定理(所有Sylow子群共轭)和Sylow第三定理(Sylow子群个数的模性质)。通过群论的基本概念,证明了这些定理,并展示了它们在理解群结构中的重要性。
摘要由CSDN通过智能技术生成

定义:设群$G$的阶数$|G|=p^rm$,其中$p$为素数且$(p,m)=1$,那么$G$的$p^k(k\leq r)$阶子群均叫做$G$的$p$子群,特别的$p^r$阶子群称为Sylow $p-$子群.

Lagrange定理告诉我们子群的阶数一定是群阶数的因子,但是反过来未必成立,也就是说对于群$G$阶数的任意因子$d$,$G$未必有$d$阶子群.例如$60$阶群$A_5$没有$30$阶子群,因为如果有这一定是正规的,与$A_5$的单性相矛盾.但是对于$p$子群的问题,我们有:

Sylow第一定理     设群$G$的阶数$|G|=n=p^lm$,其中$p$为素数且$(p,m)=1$.那么对任意的$p^k\big||G|$,$G$存在$p^k$阶子群,特别的Sylow$p-$子群存在.

证明    命集合$\Omega:=\left\{A\subset G:|A|=p^k\right\}$即为$G$的$p^k$阶子集的全体,显然$|\Omega|=\binom{n}{p^k}$.考虑置换表示$\phi:G\to S(\Omega)$,$\phi(g)A=gA$,从而$\Omega$可被分解成一些轨道的无交并,从而$$\binom{n}{p^k}=|\Omega|=\sum_{i=1}^{t}\left|\mathrm{Orb}(A_i)\right|=\sum_{i=1}^{t}\frac{p^lm}{\left|\mathrm{Stab}(A_i)\right|}$$接下来需要一个引理:$p^{l-k}\big\|\binom{n}{p^lm}$<

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值