群与作用3.1-Sylow子群的例子

Lagrange定理:若有限群的子群的阶都是大群阶的因子。(反之不成立)
但 是 但是
某群的阶数为a,对数a进行素分解:

例如:
|G|=100

subgroup 100 = 2 2 ⋅ 5 2 100=2 ^ { 2 } \cdot 5 ^ { 2 } 100=2252

must have subgroup of order:
1 ,2 ,4 and 25
order 4 25 的subgroups conjuct to each other
4 是 : 2 − s y l o w s u b g r o u p , 25 是 : 5 − s y l o w s u b g r o u p 4是:2-sylow subgroup, 25是:5-sylow subgroup 4:2sylowsubgroup,255sylowsubgroup

group Z/(12) 12 = 2 2 ⋅ 3 12=2 ^ { 2 } \cdot 3 12=223

唯一的2-sylow subgroup — {0,3,6,9}=<3>
唯一的3-sylow subgroup — {0,4,8}=<4>

sylow 第三定理与单群的判断(观看其非平凡正规子群)

证|G|=72,G不是单群:
72 = 2 3 ∗ 3 2 72=2^3*3^2 72=2332
设k为sylow-3-子群的个数,k=3t+1,k|8
则 t=0或1
若t=0:k=1,sylow-3-子群为正规子群
若t=1:k=4,设sylow-3-子群的集合为X={P1,P2,P3,P4}
G在X上的作用可递,则有G到S4 的同态。G/同态核与S4 的一个子群同构,
而|S4|=24<72,知同态核不为单位元,又因为G在X上的作用可递,所以同态核不等于G,所以同态核不平凡

参考:怎么理解Sylow定理

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
抽象代数 出版时间:2013年版 丛编项: 高等学校教材 内容简介   《高等学校教材:抽象代数》介绍了抽象代数学中最基本的内容,共4章。第一章介绍了等价关系、分类和代数系统等预备知识,第二章至第四章则分别介绍了、环、域和伽罗瓦(Galois)理论等。在每一章的末尾,还简述了一些有趣的史料和有关数学家的传记。《高等学校教材:抽象代数》可作为高等学校数学类专业本科高年级学生及研究生的教材,也可作为相关技术人员的参考用书。 目录 第一章 预备知识 第1节 集合与映射 第2节 置换集合S 第3节 等价关系与分类 第4节 代数系统 附录 第二章 第1节 的概念和性质 第2节 子群 第3节 正规子群与商 第4节 的同态与同构 第5节 循环 第6节 的直积与直和 第7节 在集合上的作用 第8节 西罗(Sylow)定理 第9节 有限交换 附录 第三章 环 第1节 环的概念和性质 第2节 无零因子环及其性质 第3节 理想与商环 第4节 环的同态与同构 第5节 极大理想与素理想 第6节 整环的分式化 第7节 唯一分解整环 第8节 多项式环 第9节 多项式环的因子分解 附录 第四章 域 第1节 域的扩张 第2节 单扩张 第3节 有限扩张与代数扩张 第4节 分裂域和正规扩张 第5节 有限域 第6节 伽罗瓦基本定理 第7节 有限可解 第8节 根式扩张与解方程 第9节 尺规作图 附录 参考文献 名词索引 符号索引

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值