范畴:群论
单群(Simple Group)
单群定义:
G G G是一个群,若 G G G没有非平凡正规真子群,即 G G G的正规子群只有 { 1 } \left\{ 1 \right\} {
1}和 G G G,则称 G G G为单群。
p-群(p-group)
p − p- p−群定义:
设 p p p是一个素数, G G G是一个有限群, e ∈ Z ≥ 0 e\in {
{\mathbb{Z}}_{\ge 0}} e∈Z≥0是使得 p e ∣ ∣ G ∣ \left. {
{p}^{e}} \right|\left| G \right| pe∣∣G∣成立的最大正整数。若 p e = ∣ G ∣ {
{p}^{e}}=\left| G \right| pe=∣G∣,则称 G G G为一个 p p p-群。
p − p- p−群例子:
- A = { [ 1 α 1 ] ∣ α ∈ F p } ⊆ G L 2 ( F p ) A=\left\{ \left. \left[ \begin{matrix} 1 & \alpha \\ {} & 1 \\ \end{matrix} \right]\text{ } \right|\text{ }\alpha \in {
{\mathbb{F}}_{p}} \right\}\subseteq G{
{L}_{2}}\left( {
{\mathbb{F}}_{p}} \right) A={
[1α1] ∣∣∣∣ α∈Fp}⊆GL2(Fp)是一个 p p p-群 。
理解:
首先有 ∣ A ∣ = p 1 \left| A \right|={ {p}^{1}} ∣A∣=p1,
其次 A A A同构于 F p { {\mathbb{F}}_{p}} Fp的加法群,即可考虑群 ( A , + ) \left( A,+ \right) (A,+),其中 + + +运算定义如下
[ 1 α 1 ] + [ 1 β 1 ] : = [ 1 α + β 1 ] \left[ \begin{matrix} 1 & \alpha \\ {} & 1 \\ \end{matrix} \right]+\left[ \begin{matrix} 1 & \beta \\ {} & 1 \\ \end{matrix} \right]:=\left[ \begin{matrix} 1 & \alpha +\beta \\ {} & 1 \\ \end{matrix} \right] [1α1]+[1β1]:=[1α+β1].
p-子群(p-subgroup)
p − p- p−子群定义:
设 p p p是一个素数, G G G是一个有限群, e ∈ Z ≥ 0 e\in {
{\mathbb{Z}}_{\ge 0}} e∈Z≥0是使得 p e ∣ ∣ G ∣ \left. {
{p}^{e}} \right|\left| G \right| pe∣∣G∣成立的最大正整数, H < G H<G H<G是 G G G的一个子群。称 H H H为 G G G的p-子群,若
∣ H ∣ ∣ p e . \left. \left| H \right|\text{ } \right|{
{p}^{e}}. ∣H∣ ∣pe.
Sylow p-子群(Sylow p-subgroup)
S y l o w p − Sylow\ p- Sylow p−子群定义:
设 p p p是一个素数, G G G是一个有限群, e ∈ Z ≥ 0 e\in {
{\mathbb{Z}}_{\ge 0}} e∈Z≥0是使得 p e ∣ ∣ G ∣ \left. {
{p}^{e}} \right|\left| G \right| pe∣∣G∣成立的最大正整数, H < G H<G H<G是 G G G的一个子群。称 H H H是 G G G的Sylow p-子群,若
∣ H ∣ = p e . \left| H \right|={
{p}^{e}}. ∣H∣=pe.
S y l o w p − Sylow\ p- Sylow p−子群例子:
-
∣ G L 2 ( F p ) ∣ = p ( p − 1 ) 2 ( p + 1 ) ⇒ p 1 ∣ ∣ G L 2 ( F p ) ∣ \left| G{ {L}_{2}}\left( { {\mathbb{F}}_{p}} \right) \right|=p{ {\left( p-1 \right)}^{2}}\left( p+1 \right)\text{ }\Rightarrow \text{ }\left. { {p}^{1}}\text{ } \right|\text{ }\left| G{ {L}_{2}}\left( { {\mathbb{F}}_{p}} \right) \right| ∣GL2(Fp)∣=p(p−1)2(p+1) ⇒ p1 ∣∣ ∣GL2(Fp)∣ ,
A : = { [ 1 α 0 1 ] ∣ α ∈ F p } ⇒ ∣ A ∣ = p 1 = ∣ F p ∣ A:=\left\{ \left. \left[ \begin{matrix} 1 & \alpha \\ 0 & 1 \\ \end{matrix} \right]\text{ } \right|\alpha \in { {\mathbb{F}}_{p}} \right\}\text{ }\Rightarrow \text{ }\left| A \right|={ {p}^{1}}=\left| { {\mathbb{F}}_{p}} \right| A:={ [10α1] ∣∣∣∣α∈Fp} ⇒ ∣A∣=p1=∣Fp∣
⇒ \Rightarrow ⇒ A A A是一个Sylow p-子群。
注:关于 ∣ G L 2 ( F p ) ∣ \left| G{ {L}_{2}}\left( { {\mathbb{F}}_{p}} \right) \right| ∣GL2(Fp)∣的计算问题。
∣ G L 2 ( F p ) ∣ = ∣ A = { [ a b c d ] ∣ a , b , c , d ∈ F p , det ≠ 0 } ∣ \left| G{ {L}_{2}}\left( { {\mathbb{F}}_{p}} \right) \right|=\left| \text{ }A=\left\{ \left. \left[ \begin{matrix} a & b \\ c & d \\ \end{matrix} \right]\text{ } \right|a,b,c,d\in { {\mathbb{F}}_{p}},\text{ }\det \ne 0 \right\}\text{ } \right| ∣GL2(Fp)∣=∣∣∣∣ A={ [acbd] ∣∣∣∣a,b,c,d∈Fp, det=0} ∣∣∣∣.
⇒ det ( A ) = a d − b c ≠ 0 \Rightarrow \det \left( A \right)=ad-bc\ne 0 ⇒det(A)=ad−bc=0.
当 a = 0 a=0 a=0</