p-群,p-子群,Sylow p-子群,共轭类

本文深入探讨了群论中的概念,包括单群、p-群、p-子群,特别是Sylow p-子群的定义、性质和应用。通过实例解析了Sylow定理,并展示了如何利用这些理论证明某些阶数的群不是单群。此外,还介绍了共轭类的概念及其在群划分中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

单群(Simple Group)

单群定义:
   G G G是一个群,若 G G G没有非平凡正规真子群,即 G G G的正规子群只有 { 1 } \left\{ 1 \right\} { 1} G G G,则称 G G G为单群。

p-群(p-group)

p − p- p群定义:
  设 p p p是一个素数, G G G是一个有限群, e ∈ Z ≥ 0 e\in { {\mathbb{Z}}_{\ge 0}} eZ0是使得 p e ∣ ∣ G ∣ \left. { {p}^{e}} \right|\left| G \right| peG成立的最大正整数。若 p e = ∣ G ∣ { {p}^{e}}=\left| G \right| pe=G,则称 G G G为一个 p p p-群。

p − p- p群例子:

  1. A = { [ 1 α 1 ]   ∣   α ∈ F p } ⊆ G L 2 ( F p ) A=\left\{ \left. \left[ \begin{matrix} 1 & \alpha \\ {} & 1 \\ \end{matrix} \right]\text{ } \right|\text{ }\alpha \in { {\mathbb{F}}_{p}} \right\}\subseteq G{ {L}_{2}}\left( { {\mathbb{F}}_{p}} \right) A={ [1α1]  αFp}GL2(Fp)是一个 p p p-群 。
    理解:
    首先有 ∣ A ∣ = p 1 \left| A \right|={ {p}^{1}} A=p1,
    其次 A A A同构于 F p { {\mathbb{F}}_{p}} Fp的加法群,即可考虑群 ( A , + ) \left( A,+ \right) (A,+),其中 + + +运算定义如下
    [ 1 α 1 ] + [ 1 β 1 ] : = [ 1 α + β 1 ] \left[ \begin{matrix} 1 & \alpha \\ {} & 1 \\ \end{matrix} \right]+\left[ \begin{matrix} 1 & \beta \\ {} & 1 \\ \end{matrix} \right]:=\left[ \begin{matrix} 1 & \alpha +\beta \\ {} & 1 \\ \end{matrix} \right] [1α1]+[1β1]:=[1α+β1].

p-子群(p-subgroup)

p − p- p子群定义:
  设 p p p是一个素数, G G G是一个有限群, e ∈ Z ≥ 0 e\in { {\mathbb{Z}}_{\ge 0}} eZ0是使得 p e ∣ ∣ G ∣ \left. { {p}^{e}} \right|\left| G \right| peG成立的最大正整数, H < G H<G H<G G G G的一个子群。称 H H H G G G的p-子群,若
∣ H ∣   ∣ p e . \left. \left| H \right|\text{ } \right|{ {p}^{e}}. H pe.

Sylow p-子群(Sylow p-subgroup)

S y l o w   p − Sylow\ p- Sylow p子群定义:
  设 p p p是一个素数, G G G是一个有限群, e ∈ Z ≥ 0 e\in { {\mathbb{Z}}_{\ge 0}} eZ0是使得 p e ∣ ∣ G ∣ \left. { {p}^{e}} \right|\left| G \right| peG成立的最大正整数, H < G H<G H<G G G G的一个子群。称 H H H G G G的Sylow p-子群,若
∣ H ∣ = p e . \left| H \right|={ {p}^{e}}. H=pe.

S y l o w   p − Sylow\ p- Sylow p子群例子:

  1. ∣ G L 2 ( F p ) ∣ = p ( p − 1 ) 2 ( p + 1 )   ⇒   p 1   ∣   ∣ G L 2 ( F p ) ∣ \left| G{ {L}_{2}}\left( { {\mathbb{F}}_{p}} \right) \right|=p{ {\left( p-1 \right)}^{2}}\left( p+1 \right)\text{ }\Rightarrow \text{ }\left. { {p}^{1}}\text{ } \right|\text{ }\left| G{ {L}_{2}}\left( { {\mathbb{F}}_{p}} \right) \right| GL2(Fp)=p(p1)2(p+1)  p1  GL2(Fp) ,
    A : = { [ 1 α 0 1 ]   ∣ α ∈ F p }   ⇒   ∣ A ∣ = p 1 = ∣ F p ∣ A:=\left\{ \left. \left[ \begin{matrix} 1 & \alpha \\ 0 & 1 \\ \end{matrix} \right]\text{ } \right|\alpha \in { {\mathbb{F}}_{p}} \right\}\text{ }\Rightarrow \text{ }\left| A \right|={ {p}^{1}}=\left| { {\mathbb{F}}_{p}} \right| A:={ [10α1] αFp}  A=p1=Fp
    ⇒ \Rightarrow A A A是一个Sylow p-子群。
    注:关于 ∣ G L 2 ( F p ) ∣ \left| G{ {L}_{2}}\left( { {\mathbb{F}}_{p}} \right) \right| GL2(Fp)的计算问题。
    ∣ G L 2 ( F p ) ∣ = ∣   A = { [ a b c d ]   ∣ a , b , c , d ∈ F p ,   det ⁡ ≠ 0 }   ∣ \left| G{ {L}_{2}}\left( { {\mathbb{F}}_{p}} \right) \right|=\left| \text{ }A=\left\{ \left. \left[ \begin{matrix} a & b \\ c & d \\ \end{matrix} \right]\text{ } \right|a,b,c,d\in { {\mathbb{F}}_{p}},\text{ }\det \ne 0 \right\}\text{ } \right| GL2(Fp)= A={ [acbd] a,b,c,dFp, det=0} .
    ⇒ det ⁡ ( A ) = a d − b c ≠ 0 \Rightarrow \det \left( A \right)=ad-bc\ne 0 det(A)=adbc=0.
    a = 0 a=0 a=0</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值