什么是最大信息系数(Maximal Information Coefficient, MIC)

最大信息系数(Maximal Information Coefficient, MIC)是一种用于量化两个变量之间依赖关系强度的统计量,它能够在不同类型的关联中(如线性、非线性、周期性等)提供一致的度量。

MIC算法是由David N. Reshef等人在2011年提出,其目的是为了克服传统相关系数(如皮尔逊相关系数)仅能描述线性关系的局限性。

MIC算法的公式

MIC的定义基于互信息(Mutual Information, MI)的概念,它试图找到一个最优的二维直方图(或称为网格),在这个网格下,两个变量之间的互信息达到最大值。

互信息度量的是两个随机变量之间的依赖程度,当两个变量完全独立时,互信息为零;反之,当两个变量完全依赖时,互信息达到最大。

MIC的计算公式可以表示为:

MIC ( X ; Y ) = max ⁡ a ∗ b < B [ I ( X ; Y ∣ a × b ) log ⁡ 2 min ⁡ ( a , b ) ] \text{MIC}(X;Y) = \max_{a*b<B} \left[ \frac{I(X;Y|a\times b)}{\log_2 \min(a,b)} \right] MIC(X;Y)=ab<Bmax[log2min(a,b)I(X;Ya×b)]

其中,

  • X X X Y Y Y 是要分析的两个随机变量。
  • I ( X ; Y ∣ a × b ) I(X;Y|a\times b) I(X;Ya×b) 是在将 X X X Y Y Y 分别划分为 a a a b b b 个箱的网格下, X X X Y Y Y互信息。
  • a a a b b b 是网格在 X X X Y Y Y 方向上的划分格子的个数。
  • B B B 是一个预定义的阈值,通常选择为数据点数量的根号或分数幂次,以控制网格的复杂度。
  • log ⁡ 2 \log_2 log2 表示以2为底的对数。
  • min ⁡ ( a , b ) \min(a,b) min(a,b) a a a b b b 中较小的一个。

MIC算法的步骤

  1. 初始化: 选择一个 B B B 值,通常是数据点数量 N N N 的平方根或0.6次方,来限制网格复杂度。
  2. 网格搜索: 在所有可能的 a × b a\times b a×b a ∗ b < B a*b<B ab<B )网格中计算互信息 I ( X ; Y ∣ a × b ) I(X;Y|a\times b) I(X;Ya×b)
  3. 计算MIC: 对于每个网格,计算 I ( X ; Y ∣ a × b ) log ⁡ 2 min ⁡ ( a , b ) \frac{I(X;Y|a\times b)}{\log_2 \min(a,b)} log2min(a,b)I(X;Ya×b) ,并选取所有可能网格下的最大值作为 MIC 的值。

公式解释

  • 互信息 I ( X ; Y ∣ a × b ) I(X;Y|a\times b) I(X;Ya×b) 描述了当 X X X Y Y Y 被划分为特定网格后,两个变量之间依赖程度的信息增益。
  • 除以 log ⁡ 2 min ⁡ ( a , b ) \log_2 \min(a,b) log2min(a,b) 这部分的作用是标准化,确保 MIC 的值在 [0,1] 之间。这是因为随着网格细化,互信息有可能无限增长,因此需要除以一个与网格复杂度相关的因子来进行归一化
  • 取最大值 确保了 MIC 能够捕捉到最能揭示两个变量之间关联模式的网格结构。

MIC的值越接近1,表示两个变量之间的关系越强,无论这种关系是线性的、非线性的还是复杂的周期性关系。

相反,如果 MIC 接近0,则表示两个变量几乎独立。

总结

MIC算法通过最大化互信息并标准化结果,提供了一种通用的方法来评估任何类型的数据关系。

它不仅适用于连续变量,也适用于离散变量,甚至混合类型的数据。

### 使用 MATLAB 进行最大信息系数 (MIC) 分析 在 MATLAB 中执行最大信息系数 (MIC) 的计算涉及几个关键步骤。由于 MATLAB 官方并未提供内置的 MIC 函数,因此通常需要依赖第三方工具箱或自定义脚本。 #### 下载并安装 MINE 工具包 为了在 MATLAB 中实现 MIC 计算,推荐下载 MINE(Maximal Information-based Nonparametric Exploration)工具包[^1]。该工具包提供了用于计算 MIC 及其他统计量的功能。 可以通过访问官方网站获取最新版本的 MINE 软件包,并按照说明将其集成到 MATLAB 环境中。 #### 加载数据集 准备要分析的数据集,确保其格式适合输入给 MINE 函数。假设有一个名为 `data.mat` 文件包含两个变量 X 和 Y: ```matlab load('data.mat'); % 导入数据文件 disp(size(data)); % 显示数据尺寸 ``` #### 执行 MIC 分析 调用适当命令来运行 MIC 分析。这里展示了一个简单的例子,其中使用了 minepy 库中的 API 接口来进行 MIC 值的估计: ```matlab % 添加路径指向已解压后的MINE软件包目录 addpath('/path/to/MINE'); % 创建一个 Mine 对象实例化 mineObj = Mine(); % 设置参数选项 opts = struct('alpha',0.6,'c',15,'est','mic_approx'); % 输入数据至Mine对象 mineObj.computeScore(X(:),Y(:)); % 获取MIC得分 micValue = getStat(mineObj,'MIC'); fprintf('The estimated MIC value is %.4f\n', micValue); ``` 上述代码片段展示了如何加载外部库、配置必要的设置以及最终获得两组样本之间的 MIC 关系强度测量结果。 #### 解读结果 得到的结果即为所求的最大信息系数值,范围介于 0 到 1 之间。数值越高表示两者间存在更强的相关性模式;反之则表明关联度较低甚至无关[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不易撞的网名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值