档案盒正面标签制作_实用:档案盒侧面标签的制作详细步骤(图文)

在平时的档案管理工作中,大家会整理一些档案合同,那么为了便于档案的管理,同时也为了快速查找文件档案,大家会给档案盒做标签。可是怎么给档案盒做侧面标签呢?下面平乡县德文档案用品有限公司的小编为大家介绍一下。

首先,那尺子量出档案盒所需要的标签长度,一般是长18cm,宽2.5cm。

882a56abe0bc7f16230818fd20d2cef5.png      aaba3d1dfd2fc2d402c692743d984041.png

打开word软件,新建空白文档,在插入栏选择文本框,然后选择竖向文本。

19eb718ab9fac0368c2499946ea6a31a.png

此时鼠标会变为十字形状,在文档中先随便拉出一个框。

1ebeef93a3439552a29a778106488211.png

选中文本框,右击鼠标,在出现的界面中,找到其他布局设置。

c8dc224f469ba8da60bc29014dbc2c4a.png

切换大小界面,高度设置18,宽度设置2.5,确定。

0c192e9783bc6591fc289149ceae4fb5.png

然后在文本框中输入文字。

001e8c2fd022b96afa49ee8cc1b53059.png

如果觉得字间距密集的话,可以加宽字间距。

230e6c3a62a7bef3971d476f4275588f.png

字间距和自体,可以根据自己公司要求来调整。

140e3c25424890f6279f2250cd007feb.png

调整完之后,可以直接打印,之后剪出来标签即可。

81a5dd8b997219d9994452cf8037da5f.png

以上便是平乡县德文档案用品有限公司的小编,为大家整理的关于怎么给档案盒做侧面标签的相关内容,希望能帮助到更多不了解档案盒的朋友。

平乡县德文档案用品有限公司的产品全部使用进口牛皮纸、无酸纸WSD-S200031、(采用先进的AKD中性施胶工艺,无腐蚀);纸糊盒、PP系列使用漆布、漆纸、棉布、国标塑料,使档案长期保存不变质、外形美观、不褪色、具有防虫,防霉等特点。

原文链接:

http://www.pxdwda.com/news-page-cateid-371-id-949.html

如果大家有需要可以直接拨打下方联系方式进行咨询定制!

联系人:胡经理

电  话:13673197910

Q    Q:695278843

官  网:http://www.pxdwda.com/

关注后留言

喜欢请给我点好看吧

### 基于YOLOv10的无人机图像目标检测方法的研究与应用 #### 一、背景介绍 视频目标检测旨在解决视频中每一帧内目标的正确识别和定位问题[^1]。对于特定场景如无人机拍摄的画面,由于视角独特性和环境复杂度增加,传统的方法可能无法满足高效准确的需求。 #### 二、技术框架概述 针对无人机图像的特点,在构建基于YOLOv10的目标检测系统时,需特别关注以下几个方面: - **特征提取增强**:借鉴BiFormer的设计理念,利用BRA(Balance Refinement Attention)机制来提升模型处理不同尺度尤其是小物体的能力[^2]。 - **多尺度融合策略**:采用类似于Drone-YOLO中的sandwich-fusion(SF)结构,通过组合低层次的空间细节以及高层次的抽象语义描述,从而更好地捕捉到各类大小不一的对象,并提高整体性能表现[^4]。 - **鲁棒性保障措施**:考虑到实际应用场景中存在的遮挡、模糊等问题,确保所使用的特征表示能够携带足够的上下文线索,使得即使面对部分可见或者质量不佳的情况也能保持较高的准确性[^3]。 ```python import torch from yolov10 import YOLOv10 def preprocess_image(image_path): """预处理函数""" pass def detect_objects(model, image_tensor): """执行推理过程""" predictions = model(image_tensor) return predictions if __name__ == "__main__": device = "cuda" if torch.cuda.is_available() else "cpu" # 初始化YOLOv10模型实例 yolo_model = YOLOv10(pretrained=True).to(device) # 加载并准备测试图片数据 test_img = preprocess_image('path/to/drone/image.jpg') # 进行预测操作 results = detect_objects(yolo_model, test_img.to(device)) ``` 此段代码展示了如何加载预先训练好的YOLOv10模型并对单张无人机捕获的照片实施目标检测流程;具体实现细节会依据官方文档进一步调整参数配置等设置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值