jjm2002
码龄4年
关注
提问 私信
  • 博客:145,832
    社区:218
    视频:181
    146,231
    总访问量
  • 106
    原创
  • 71,417
    排名
  • 1,833
    粉丝
  • 221
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2021-05-09
博客简介:

qq_58060770的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    6
    当前总分
    1,999
    当月
    14
个人成就
  • 获得864次点赞
  • 内容获得27次评论
  • 获得1,219次收藏
  • 代码片获得14,963次分享
创作历程
  • 72篇
    2024年
  • 2篇
    2023年
  • 32篇
    2022年
成就勋章
TA的专栏
  • 点云配准C++
    付费
    38篇
  • 点云配准Python
    付费
    24篇
  • ROS
    付费
    19篇
  • linux
    付费
    8篇
  • 深度学习
    4篇
  • 数据集制作
    5篇
  • 点云配准Matlab
    1篇
  • numpy
    1篇
兴趣领域 设置
  • 编程语言
    pythonc++
  • 开发工具
    github
  • 前端
    html5javascriptjquerycss
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Realsense获取保存点云

例如,彩色流的分辨率和帧率会影响图像的清晰度和流畅性。: 将深度图像对齐到彩色图像,使得深度和彩色信息在相同的像素位置上对齐。: 启用彩色流,设置分辨率为848x480,格式为BGR8,帧率为30fps。: 启用彩色流,设置分辨率为848x480,格式为BGR8,帧率为30fps。更高的分辨率会提供更清晰的图像,但也会增加数据处理的负担。: 帧率(FPS),较高的帧率会使捕获更流畅,但也会增加处理负担。: 应用对齐,确保深度帧和彩色帧的像素是对齐的。: 应用对齐,确保深度帧和彩色帧的像素是对齐的。
原创
发布博客 2024.05.22 ·
582 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

YOLOv8检测图片和视频

使用了sahi的视频检测。
原创
发布博客 2024.05.03 ·
3028 阅读 ·
2 点赞 ·
2 评论 ·
28 收藏

Open3D均值和中值滤波

两种滤波方法都会受到k值的影响,这个值需要根据具体应用和点云的特性仔细选择。均值滤波提供了一种平滑处理,适用于去除随机噪声;中值滤波则更适合去除离群点或更极端的噪声,因为中值对极端值不敏感。
原创
发布博客 2024.04.26 ·
161 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Open3D最小二乘法拟合平滑点云

这段代码是用于平滑点云的 Python 脚本,使用了 Open3D 库和 Numpy 库。它的主要作用是对每个点云中的点进行最小二乘平面拟合,并将点投影到拟合的平面上,从而减少噪声和不规则性,得到一个更加平滑的点云。如果一个点的邻近点数量小于 3,跳过该点(因为至少3个点才能确定一个平面)。是一个 N x 3 维的 NumPy 数组,包含 N 个点的坐标。选择与最小特征值对应的特征向量作为平面的法向量。,它描述了点云数据在不同维度上的变化。,该点是所有点坐标的平均值。的点云数据为平滑后的点集。
原创
发布博客 2024.04.20 ·
294 阅读 ·
4 点赞 ·
0 评论 ·
0 收藏

Open3D点云直通滤波

点云直通滤波(Passthrough Filtering)是一种常用的点云预处理方法,其目的是从点云数据中裁剪出感兴趣的区域,或者移除不在特定范围内的点。这项技术在点云数据分析、处理和视觉理解中非常有用。:通过移除某些轴(例如,Z轴)上的远距离点,可以减少环境噪声对点云分析的影响。:如果只对点云中的特定区域感兴趣,直通滤波可以用来裁剪出这一区域,使得后续处理更加高效和集中。:通过移除不必要的点,直通滤波可以减少数据量,加快后续处理步骤的计算速度。
原创
发布博客 2024.04.20 ·
529 阅读 ·
17 点赞 ·
0 评论 ·
0 收藏

Open3D实现点云的平移、旋转、缩放

的值决定了点云旋转的幅度。点云将围绕指定轴和原点 (0,0,0) 旋转。: 旋转轴,0 表示 x 轴,1 表示 y 轴,2 表示 z 轴。: 平移轴,0 表示 x 轴,1 表示 y 轴,2 表示 z 轴。的值表示沿着指定轴的平移距离,正值表示正方向,负值表示负方向。这个函数将点云缩小为原来的一半大小,相对于点云的中心进行缩放。每个函数将点云作为输入,并对其应用特定的变换。这个函数旋转点云给定的角度(以度为单位)。这个函数沿着指定轴平移点云。: 需要旋转的点云。: 需要平移的点云。: 需要缩放的点云。
原创
发布博客 2024.04.17 ·
580 阅读 ·
7 点赞 ·
0 评论 ·
0 收藏

Open3D提取点云外轮廓

设置得太小,那么噪声会对曲率计算产生较大影响,可能会导致曲率估计不准确,边界提取也可能包含很多噪声点。:根据这些索引从原始点云中提取边界点,然后创建一个新的点云来保存这些边界点。每个点的曲率并基于曲率值提取边界点。:找到曲率值大于曲率值数组的90百分位数的点的索引(被认为是边界点)。是在计算每个点曲率时所考虑的最近邻点的数量。设置得太大,可能会平滑掉一些重要的几何特征,导致不能准确识别边界点。:计算每个点的曲率。:函数接受两个参数,一个是点云。从点云中提取这些最近邻点的坐标。的函数,旨在计算输入点云。
原创
发布博客 2024.04.17 ·
386 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

使用open3d分离背景和物体点云(三)

较小的值可能导致许多小聚类和噪声点被错误地分组,而较大的值可能会导致应该分开的聚类被合并。正确设置这个参数需要了解你的数据以及你想要识别的结构的大小。:根据平面点云与物体点云的平均深度来判断哪个是真正的物体。如果平面点云的深度大于物体点云的深度,那么物体点云被认为是实际的物体,否则平面点云被认为是物体。较小的值可能导致过度分割,而较大的值可能导致欠分割。:计算假设为平面的点云和物体点云的平均深度(在这里,代码假设Z轴为深度方向)。函数来分割出包含最多点的聚类(假设为平面)和其他所有点(假设为物体)。
原创
发布博客 2024.04.16 ·
154 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

PCL高斯滤波

方法设置一个阈值,以sigma为单位,这里设置为4。增加sigma会使周围点的权重更平均,导致更强的平滑效果,但同时也可能导致特征的模糊。: 设置搜索半径,这将定义在卷积过程中,每个点周围被考虑的邻域大小。较大的搜索半径可以包括更多的点,从而增强平滑效果,但同样也会增大计算开销。标准差越大,平滑效果越明显,因为更远的点被考虑到了。: 设置一个阈值来限制影响卷积的点的范围,以sigma为单位。这个搜索半径定义了点云中每个点的邻域大小,即考虑卷积的点的范围。指的是搜索结构,如KD树,用于在点云中查找近邻点。
原创
发布博客 2024.04.15 ·
230 阅读 ·
5 点赞 ·
0 评论 ·
1 收藏

PCL使点云产生毛刺

一个较大的标准差(如0.1)会生成较大的随机扰动,即噪声较多。: 在这个代码中,均值设置为0,这意味着噪声将围绕点云的原始位置对称分布,即噪声没有系统的偏移。如果均值不为零,那么添加的噪声将围绕一个偏移的位置分布,导致整个点云向某个方向移动。噪声是通过一个正态(高斯)分布生成的,这种分布在统计学中常用于模拟自然现象中的随机变化。作为种子,它是一个非确定性的随机数生成器,用来产生高质量的随机种子。均值决定了分布的中心位置,标准差决定了分布的宽度,即数值的变化范围。接下来的循环通过引用迭代点云中所有的点。
原创
发布博客 2024.04.15 ·
194 阅读 ·
4 点赞 ·
0 评论 ·
0 收藏

Open3D生成规则点云(三)

【代码】Open3D生成规则点云(三)
原创
发布博客 2024.04.12 ·
100 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Open3D生成规则点云(二)

编写函数create_square生成正方体 ,注意这个正方体的内部是填充的,不是空心的。编写函数regularTriangularPrism生成正三棱柱面。编写函数create_cone生成圆锥面。编写函数create_sphere生成球面。使用Open3D内置函数生成圆锥面。
原创
发布博客 2024.04.12 ·
195 阅读 ·
6 点赞 ·
0 评论 ·
0 收藏

Open3D生成规则点云(一)

参数可以改变圆柱体的形状、大小和点云的密度。合并点云时,可以通过调整两个点云的相对位置和方向来得到不同的组合效果。参数表示球体的分辨率(生成的点云密度)。生成的球体点云存储在变量。生成的圆柱体点云存储在变量。这段代码中的参数设置会影响生成的点云的形状和密度。参数可以改变球体的大小和点云的密度。最后,将球体和圆柱体的点云合并为一个点云,通过。参数表示圆柱体的分辨率(生成的点云密度),接下来,在生成圆柱体点云时,使用了。首先,在生成球体点云时,使用了。访问点云的坐标数据。访问点云的坐标数据。
原创
发布博客 2024.04.11 ·
180 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

使用open3d分离背景和物体点云(二)

更高的百分位数会导致更多的点被视为背景,而更低的百分位数可能将部分背景点错误地归类为物体。的设置对结果影响很大,如果设置得太高,可能会包括太多背景点,太低则可能丢失重要的前景点。特征向量对应的特征值表示了点云分布在特征向量方向上的方差大小,Z轴分量最大的特征向量表征了点云的垂直方向。通过点积的阈值(此处设置为点积的25百分位数)来区分背景和物体,小于阈值的点被认为是背景,否则是物体。计算点云中每个点到均值点的向量与上述垂直向量的点积,用于判断点是否属于背景或物体。,它仅包含深度小于阈值的点。
原创
发布博客 2024.04.06 ·
478 阅读 ·
17 点赞 ·
0 评论 ·
1 收藏

使用Python写简单的点云高斯滤波

首先,函数估计每个点的法线,这对于后续的KNN搜索可能有帮助,特别是在进行表面重建时。合适的参数取决于点云的特性和所需的应用。用这些权重和邻居点的位置,计算加权的平均位置,该位置将成为滤波后新点云中对应点的位置。:每个点的邻居数量。这个参数决定了在计算每个点的新位置时考虑的周围点的数量。会给予邻近点更大的权重,更远的点几乎没有影响,这样能更好地保留边缘和细节;这个参数控制高斯权重的分布范围,即邻居点的影响力大小。: 初始化一个同样形状的数组用于存放滤波后的点云数据。: 将滤波后的点赋给新点云的点集。
原创
发布博客 2024.04.05 ·
475 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

使用Python写简单的点云SUSAN关键点检测

较低的阈值会导致更多的点被选为关键点,而较高的阈值会导致较少的点被选中。总的来说,这些参数的设置应基于点云数据的特性和应用的特定需求进行调整。然而,在某些情况下,由于进程间通信的开销,使用较少的核心可能会更有效率。方法,根据筛选出的索引来创建包含关键点的新PointCloud对象。这个函数是并行计算每个点的关键点响应值的核心。会导致更少的点被认为是相似的,可能会减少关键点的数量。: 输入的点云,Open3D的PointCloud对象。会导致更多的点被认为是相似的,可能会增加关键点的数量。
原创
发布博客 2024.04.05 ·
228 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

使用Python写简单的点云harris 3D关键点检测

使用列表中的索引从原始点云中选择关键点。返回关键点组成的子点云。
原创
发布博客 2024.04.04 ·
208 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

点云的Python均值采样

它指定了八叉树的深度,从而控制下采样的粒度。更深的八叉树意味着更细的划分,因此最终的点云会更密集;较浅的八叉树意味着更粗糙的划分,点云会更稀疏。它决定了下采样后点云中点的数量。它决定了在计算每个采样点的均值时要考虑的最近邻点的数量。不同的方法会影响下采样的结果和性能。值则保留更多的局部细节,但可能会导致最终的下采样点云中的噪声增加。根据具体的应用场景和对下采样结果的需求,可以调整。是你想要在下采样后的点云中得到的点数,对象,即需要被下采样的点云数据。参数来得到最佳的下采样效果。这段代码定义了一个函数。
原创
发布博客 2024.04.04 ·
331 阅读 ·
8 点赞 ·
0 评论 ·
1 收藏

PCL使用GROR配准

我在逛github的时候偶然发现的我为了方便检测效果稍微修改了主程序,这里只展示我的主程序,其他文件可以去上述网址下载,如果github进不去,可以在这里下载。
原创
发布博客 2024.04.03 ·
417 阅读 ·
11 点赞 ·
1 评论 ·
1 收藏

GROR配准,一种基于对应图可靠性的快速点云配准异常值去除策略

发布资源 2024.04.03 ·
zip
加载更多