matlab roty,Rotation matrix for rotations around y-axis

Rotation matrices are used to rotate a vector

into a new direction.

In transforming vectors in three-dimensional space, rotation matrices are often encountered.

Rotation matrices are used in two senses: they can be used to rotate a vector into a new

position or they can be used to rotate a coordinate basis (or coordinate system) into a new

one. In this case, the vector is left alone but its components in the new basis will be

different from those in the original basis. In Euclidean space, there are three basic

rotations: one each around the x, y and z axes. Each rotation is specified by an angle of

rotation. The rotation angle is defined to be positive for a rotation that is

counterclockwise when viewed by an observer looking along the rotation axis towards the

origin. Any arbitrary rotation can be composed of a combination of these three

(Euler’s rotation theorem). For example, you can rotate a vector in

any direction using a sequence of three rotations: v′=Av=Rz(γ)Ry(β)Rx(α)v.

The rotation matrices that rotate a vector around the x, y,

and z-axes are given by:

Counterclockwise rotation around x-axis

Rx(α)=[1000cosα−sinα0sinαcosα]

Counterclockwise rotation around y-axis

Ry(β)=[cosβ0sinβ010−sinβ0cosβ]

Counterclockwise rotation around z-axis

Rz(γ)=[cosγ−sinγ0sinγcosγ0001]

The following three figures show what positive rotations look

like for each rotation axis:

41b631ac28456e54c5bbf979c04ad295.png

08a0decfc9e8cd1c5cdda97149a518ea.png

198448f4bce2009deb83eaabd8bd481e.png

For any rotation, there is an inverse rotation satisfying A−1A=1. For example, the inverse of the x-axis rotation matrix is obtained by

changing the sign of the angle:

Rx−1(α)=Rx(−α)=[1000cosαsinα0−sinαcosα]=Rx′(α)

This example illustrates a basic property: the inverse rotation matrix

is the transpose of the original. Rotation matrices satisfy A’A = 1, and

consequently det(A) = 1. Under rotations, vector lengths are preserved as

well as the angles between vectors.

We can think of rotations in another way. Consider the original set of basis vectors, i,j,k, and rotate them all using the rotation matrix A. This

produces a new set of basis vectors i′,j,′k′ related to the original by:

i′=Aij′=Ajk′=Ak

Using the transpose, you can write the new basis vectors as a linear

combinations of the old basis vectors:

[i′j′k′]=A′[ijk]

Now any vector can be written as a linear combination of either set of basis vectors:

v=vxi+vyj+vzk=v′xi′+v′yj′+v′zk′

Using algebraic manipulation, you can derive the transformation of

components for a fixed vector when the basis (or coordinate system) rotates. This

transformation uses the transpose of the rotation matrix.

[v′xv′yv′z]=A−1[vxvyvz]=A′[vxvyvz]

The next figure illustrates how a vector is transformed as the coordinate

system rotates around the x-axis. The figure after shows how this transformation can be

interpreted as a rotation of the vector in the opposite

direction.

8c214c4ccf87d71e03a5a27100889093.png

9655da3ed69f3f1e9d065968812488f1.png

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值