深度学习stride_使用PyTorch进行迁移学习

以及为什么不应该从头开始编写CNN架构

如今,训练深度学习模型(尤其是与图像识别相关的模型)是一项非常简单的任务。 您不应该过多强调架构的原因很多,主要是有人已经为您完成了这一步骤。 其余的,您需要进一步阅读。

549770548e56de4325fc15c6c5ef04a4.png

> Photo by drmakete lab on Unsplash

源代码:Colab Notebook

如今,作为工程师,您唯一应关注的就是数据准备-在深度学习领域,该术语概括了数据收集,加载,规范化和扩充的过程。

今天的议程很简单-解释什么是转移学习以及如何使用转移学习,然后给出带有或不带有预训练架构的模型训练的实际示例。

听起来很简单,所以我们直接开始吧!

数据集下载和基本准备

让我们从导入开始。 在这里,我们有像Numpy,Pandas和Matplotlib这样的常见嫌疑人,还有我们最喜欢的深度学习库Pytorch,其次是它所提供的一切。

import osimport numpy as npimport pandas as pdimport matplotlib.pyplot as pltfrom datetime import datetimeimport torchimport torch.nn as nnimport torch.nn.functional as Ffrom torch.utils.data import DataLoaderfrom torchvision.utils import make_gridfrom torchvision import models, transforms, datasets

我们将在Colab或Colab Pro中更精确地编写此代码,因此我们将利用GPU的强大功能进行培训。

由于我们正在使用GPU进行培训,而您可能并非如此,因此,我们需要一种可靠的方法来进行处理。 这是一种标准方法:

device = torch.device(‘cuda:0’ if torch.cuda.is_available() else ‘cpu’)device>>> device(type=’cuda’, index=0)

如果您正在使用CPU进行培训,则应该输入type ='cpu'之类的字眼,但是由于Colab是免费的,因此您无需这样做。

现在到数据集上。 我们将为此使用Dog或Cat数据集。 它具有大量各种尺寸的图像,我们将在以后处理这些图像。 现在,我们需要下载并解压缩它。 就是这样:

%mkdir data%cd /content/data/!wget http://files.fast.ai/data/dogscats.zip!unzip dogscats.zip

大约一分钟后,根据您的互联网速度,可以使用该数据集。 现在,我们可以将其声明为数据目录-不是必需的,但可以节省一些时间。

DIR_DATA = '/content/data/dogscats/'

资料准备

现在已经完成了第一部分的第一部分。 接下来,我们必须对训练和验证子集应用一些转换,然后使用DataLoaders加载转换后的数据。 这是我们应用的转换:

· 随机旋转

· 随机水平翻转

· 调整为224x224-预训练架构所需

· 转换为张量

· 正常化

这是代码:

train_transforms = transforms.Compose([    transforms.RandomRotation(10),    transforms.RandomHorizontalFlip(p=0.5),    transforms.Resize(224),    transforms.CenterCrop((224, 224)),    transforms.ToTensor(),     transforms.Normalize(        mean=[0.485, 0.456, 0.406],        std=[0.229, 0.224, 0.225]    )])valid_transforms = transforms.Compose([    transforms.Resize(224),    transforms.CenterCrop((224, 224)),    transforms.ToTensor(),    transforms.Normalize(        mean=[0.485, 0.456, 0.406],        std=[0.229, 0.224, 0.225]    )])

现在,我们使用DataLoaders加载数据。 此步骤也很简单,您可能已经熟悉了:

train_data = datasets.ImageFolder(os.path.join(DIR_DATA, ‘train’), transform=train_transforms)valid_data = datasets.ImageFolder(os.path.join(DIR_DATA, ‘valid’), transform=valid_transforms)torch.manual_seed(42)train_loader = DataLoader(train_data, batch_size=64, shuffle=True)valid_loader = DataLoader(valid_data, batch_size=64, shuffle=False)class_names = train_data.classesclass_names>>> ['cats', 'dogs']

如果现在要对单个批次进行逆归一化并可视化,则可以得到以下信息:

687516fb88ddf4a888d58482a6668c59.png

快速浏览上图表明我们的转换工作符合预期。

数据准备部分现已完成,在下一节中,我们将声明一个自定义的CNN架构,对其进行训练并评估性能。

定制架构CNN

对于这一部分,我们想要做一些非常简单的事情-3个卷积层,每个卷积层之后是max-pooling和ReLU,然后是一个完全连接的层和一个输出层。

这是该架构的代码:

class CustomCNN(nn.Module):    def __init__(self):        super().__init__()        self.conv1 = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, stride=1)        self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=1)        self.conv3 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1)        self.fc1 = nn.Linear(in_features=26*26*64, out_features=128)        self.out = nn.Linear(in_features=128, out_features=2)    def forward(self, x):        x = F.relu(self.conv1(x))        x = F.max_pool2d(x, kernel_size=2, stride=2)        x = F.relu(self.conv2(x))        x = F.max_pool2d(x, kernel_size=2, stride=2)        x = F.relu(self.conv3(x))        x = F.max_pool2d(x, kernel_size=2, stride=2)        x = x.view(-1, 26*26*64)        x = F.relu(self.fc1(x))        x = F.dropout(x, p=0.2)        x = self.out(x)        return F.log_softmax(x, dim=1)torch.manual_seed(42)model = CustomCNN()model.to(device)

从这里我们可以定义一个优化器和标准,我们准备进行训练:

custom_criterion = nn.CrossEntropyLoss()custom_optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

由于您可以访问源代码,并且train_model函数很长,因此我们决定不将其放在此处。 因此,如果您要继续,请参考源代码。 我们将训练模型10个时间段:

custom_model_trained = train_model(    train_loader=train_loader,    test_loader=valid_loader,    model=model,    criterion=custom_criterion,    optimizer=custom_optimizer,    epochs=10)

一段时间后,这里是获得的结果:

fb424671299244363c038b013c346f2f.png

无论如何,这都不是可怕的结果,但是我们如何才能做得更好? 迁移学习就派得上用场了。

迁移学习

您可以轻松地在线查找正式定义。 对我们而言,迁移学习意味着下载预制的体系结构,该体系结构接受过1M +图像的训练,并调整输出层,以便根据需要对尽可能多的类进行分类。

由于我们这里只有猫和狗,因此我们需要将此数字修改为两个。

现在,我们将下载ResNet101架构的预训练版本,并使它的参数不可训练-因为该网络已经过训练:

pretrained_model = models.resnet101(pretrained=True)for param in pretrained_model.parameters():    param.requires_grad = False

赞! 让我们检查一下输出层的外观:

pretrained_model.fc>>> Linear(in_features=2048, out_features=1000, bias=True)

因此,默认情况下,该体系结构具有1000个可能的类,但是我们只需要两个类-一个用于猫,一个用于狗。 调整方法如下:

pretrained_model.fc = nn.Sequential(    nn.Linear(2048, 1000),    nn.ReLU(),    nn.Dropout(0.5),    nn.Linear(1000, 2),    nn.LogSoftmax(dim=1))pretrained_model.to(device)

这就是我们要做的。

好了,我们仍然必须定义和优化器以及一个准则,但是您知道如何做到这一点:

pretrained_criterion = nn.CrossEntropyLoss()pretrained_optimizer = torch.optim.Adam(pretrained_model.fc.parameters(), lr=0.001)

训练过程与自定义体系结构相同,但是我们不需要太多的时间,因为好了,我们已经知道权重和偏差的正确值。

pretrained_model_trained = train_model(    train_loader=train_loader,    test_loader=valid_loader,    model=pretrained_model,    criterion=pretrained_criterion,    optimizer=pretrained_optimizer,    epochs=1)

经过一段时间后,得出的结果如下:

0351a727c389d18a355b55456d7a3a98.png

那有多神奇? 不但提高了准确性,而且还因为没有训练太多的时间段而节省了很多时间。

现在您知道了迁移学习可以做什么,以及如何以及为什么使用它。 让我们在下一节中总结一下。

结论

而且,您已获得了— PyTorch最简单的迁移学习指南。 当然,如果网络更深入,自定义模型的结果可能会更好,但这不是重点。 关键是,无需强调多少层就足够了,以及最佳超参数值是多少。 至少在大多数情况下。

确保尝试不同的体系结构,并随时在下面的评论部分中告知我们有关结果的信息。

谢谢阅读。

(本文翻译自Dario Radečić的文章《Transfer Learning with PyTorch》,参考:https://towardsdatascience.com/transfer-learning-with-pytorch-95dd5dca82a)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值