Pytorch:stride步长

本文详细解析了PyTorch中存储(storage)的概念及其与张量(tensor)的关系。介绍了如何通过张量的size、storage offset及stride来理解张量在存储中的布局方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

pytorch中的storage指的是连续的内存块,而tensor则是映射到storage的视图,他把单条的内存区域映射成了n维的空间视图。

size是tensor的维度,storage offset是数据在storage中的索引,stride是storage中对应于tensor的相邻维度间第一个索引的跨度,也叫步长。示例如下:

上图是一个storage,与它对应的tensor([[3.0, 1.0, 2.0], [4.0, 1.0, F]])如下图所示:

那么这里的stride=(3,1),因为从第一行的第一个索引到第二行第一个索引跨度是3,从第一列到第二列的跨度是1,stride是个元组,stride[0]=3,stride[1]=1;这里的size应为torch.Size([2, 3]);根据tenser中的索引i,j查找storage中对应索引的公式是storage_offset + stride[0] * i + stride[1] * j ,因为是从storage的开头查找,所以storage_offset=0。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值