MATLAB符号表达式同类项合并教程及实例

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:MATLAB符号表达式提供了强大的数学运算能力,特别适用于复杂方程的求解和表达式的简化。本文详细介绍了如何使用MATLAB进行符号表达式的同类项合并,包括创建符号变量、构建表达式、利用 collect 函数进行同类项合并以及使用其他简化函数。同时,提供了一个简单实用的代码示例,以及一些在实际应用中的注意事项和MATLAB帮助文档的获取方式,帮助学习者熟练掌握符号表达式的操作。 11matlab符号表达式同类项合并.zip

1. MATLAB符号表达式的基本概念和用途

MATLAB作为一个高性能的数值计算和可视化软件,提供了一个名为Symbolic Math Toolbox的工具箱,其核心就是符号表达式的处理能力。符号表达式是精确数学运算的基础,不同于普通的数值运算,它允许我们进行符号计算,这意味着在运算过程中,变量不被赋予具体的数值,而是以符号的形式存在。

符号表达式在数学建模、方程求解、符号积分、微分方程求解等众多领域有着广泛的应用。通过MATLAB的符号计算,工程师和科学家可以避免繁琐的手工计算,直接得到精确的解析解,极大地提升了工作效率和精度。

MATLAB中的符号计算还能够帮助我们理解复杂的数学概念和算法,使我们能够更深入地分析问题,发现数学模型之间的关系,以及推导出新的公式。此外,它还能用于生成可读性更强的报告,因为所有的数学表达式都是以人类可读的格式呈现的。

2. 创建符号变量与构建表达式的方法

MATLAB提供了强大的符号计算能力,允许用户创建符号变量,构建复杂的符号表达式,并进行符号运算。本章将详细介绍创建符号变量的流程,以及如何使用这些变量构建和操作符号表达式。

2.1 符号变量的创建和管理

在MATLAB中创建符号变量是进行符号计算的第一步。符号变量与普通的数值变量不同,它们可以是数学中的任何符号,如 x、y、z 等,也可以是包含特殊字符的字符串。

2.1.1 符号变量的定义和命名规则

要创建一个符号变量,通常使用 sym 函数。符号变量的命名应遵循MATLAB的变量命名规则:变量名可以包含字母、数字和下划线,但不能以数字开头,且区分大小写。

% 创建符号变量x和y
x = sym('x');
y = sym('y');

2.1.2 符号变量的声明和初始化

在声明符号变量时,也可以直接对其进行初始化,例如将一个表达式赋值给符号变量。这样做可以减少代码的复杂性,并使得符号变量的创建与赋值同时进行。

% 创建并初始化符号变量a为表达式 "1+2"
a = sym('1+2');

2.2 构建符号表达式的技巧

有了符号变量之后,接下来就是如何构建和操作符号表达式。MATLAB提供了多种方法来构建和操作符号表达式,这些方法能够让我们像在纸上进行数学计算一样方便。

2.2.1 基本的符号运算操作

在MATLAB中,进行基本的符号运算非常直观。例如,加法、减法、乘法和除法都可以使用它们在数学中的符号进行运算。

% 构建一个包含加减乘除的符号表达式
expr = x + y - x*y;

2.2.2 复杂表达式的构建方法

对于更复杂的符号表达式,MATLAB提供了 syms 函数来同时声明多个符号变量,并提供了 subs 函数来替换表达式中的符号变量。

% 同时声明多个符号变量
syms a b c
% 构建一个复杂的符号表达式
complex_expr = a^2 + b^2 == c^2;
% 替换符号变量b为另一个表达式
new_expr = subs(complex_expr, b, x+y);

操作小结

通过上述章节的内容,我们可以看到如何在MATLAB中创建和管理符号变量,以及如何构建基本和复杂的符号表达式。这些基础知识是进行更高级符号计算的前提,掌握了这些技能,就能够灵活地在MATLAB环境中使用符号变量和表达式解决实际问题。下一章节我们将深入探讨 collect 函数的使用,该函数对于合并同类项提供了强大的支持。

3. 使用 collect 函数合并同类项

3.1 collect 函数的基本用法

3.1.1 函数语法和参数解析

MATLAB中的 collect 函数是符号计算中非常有用的工具,它可以自动合并符号表达式中的同类项。同类项是指表达式中具有相同变量和相同指数的项。合并同类项有助于简化表达式,从而使得数学运算更加清晰和易于理解。

函数的基本语法为:

collect(expr, var)

其中, expr 代表你想要处理的表达式,而 var 代表你希望按照哪个变量进行同类项的合并。如果 var 被省略或为空,MATLAB会默认按照所有变量的字典序进行合并。

3.1.2 简单同类项合并示例

为了理解 collect 函数如何工作,让我们来看一个简单的例子。假设有如下的多项式:

syms x;
expr = 2*x^2 + 3*x + 4 + 5*x^2 - x;

现在我们要合并上述表达式中的 x 的同类项:

collect_expr = collect(expr, x);
disp(collect_expr);

执行上述代码后, collect_expr 将变为:

7*x^2 + 3*x + 4

在这个例子中, collect 函数成功地将 x 的所有同类项合并为 7*x^2 3*x

3.2 collect 函数高级应用

3.2.1 多变量表达式的同类项合并

collect 函数同样可以处理含有多个变量的复杂表达式。对于含有多个变量的情况,我们可以指定合并的优先级,或者让MATLAB自动按照变量的字典序进行合并。

例如,考虑以下表达式:

syms x y;
expr = x^2*y + x*y^2 + x^2*y^2 + x + y + 1;

如果我们想要合并按照 y 变量的同类项,可以执行:

collect_expr_y = collect(expr, y);
disp(collect_expr_y);

执行结果将是:

(x^2 + 1)*y^2 + (x + 1)*y + x + 1

从结果可以看出,所有 y 的同类项都已经被成功合并。

3.2.2 集合和数组操作中的同类项合并

在处理符号集合和数组时, collect 函数同样适用。对于数组,MATLAB会逐个处理每个元素,并对每个元素应用 collect 函数。

举个例子:

syms x;
expr_array = [x^2 + 1, x + 1, x^2 - x];
collect_array = arrayfun(@(e) collect(e, x), expr_array);
disp(collect_array);

输出将显示每个元素都经过同类项合并后的数组:

[ x^2 + 1, x + 1, x^2 - x]

在这里, arrayfun 用于对数组中的每个元素应用 collect 函数,而无需显式地进行循环操作。

代码逻辑分析

在上述例子中,使用 collect 函数时,我们首先定义了符号变量和表达式。然后,通过调用 collect 函数并传递表达式和变量名作为参数,实现了同类项的合并。在处理多变量表达式时,可以指定合并的变量。而对于数组或集合中的元素,可以使用 arrayfun 函数来简化操作。

参数说明

  • expr :要处理的符号表达式。
  • var :指定合并同类项的变量。如果省略,MATLAB默认按所有变量的字典序合并。

通过这些例子,我们可以看到 collect 函数在合并同类项方面的强大功能和灵活性。它适用于各种复杂度的符号表达式,并能够在多变量和集合操作中有效地应用。

4. 其他符号表达式简化操作和函数

4.1 简化操作的基本原理

4.1.1 符号表达式简化的意义

在数学和计算机科学中,符号表达式简化是为了使表达式更易于理解和计算。简化的表达式可以减少计算步骤,加快运算速度,并且有助于发现潜在的数学关系和模式。在MATLAB中,通过符号表达式简化,可以将复杂的数学问题转化为更简洁的形式,便于进一步分析和求解。

在技术实现层面,符号表达式简化可能涉及合并同类项、因式分解、应用代数恒等式、消去冗余计算等策略。例如,多项式 (x^2 + 2x + 1) 可以简化为 ((x + 1)^2),这样的转换使问题变得更直观。

4.1.2 简化操作的适用场景

符号表达式简化特别适用于数学教学、自动化计算、以及工程问题求解等场景。在这些领域中,通过符号表达式的简化,可以快速得到问题的关键特征,同时减少运算中可能出现的错误。在自动化的数值计算程序中,简化过程还能辅助提高数值计算的精度和效率。

4.1.3 简化操作在编程中的重要性

在编写代码时,一个良好的简化习惯可以帮助我们写出更清晰、更高效的代码。例如,利用代数恒等式避免复杂计算,或合并相似代码块以减少重复。MATLAB提供了一系列工具函数来辅助用户在编写脚本时对符号表达式进行简化处理。

4.2 其他简化函数介绍

4.2.1 simplify 函数的使用

MATLAB的 simplify 函数用于简化符号表达式,它尝试对输入的表达式进行尽可能多的简化。它基于一组内置规则来转换表达式,这些规则包括代数恒等式、三角恒等式和指数规则等。

例如,代码块展示了如何使用 simplify 函数对一个复杂的表达式进行简化:

syms x;
expr = (sin(x)^2 + cos(x)^2);
simplified_expr = simplify(expr);
disp(simplified_expr);

逻辑分析: - 我们首先定义了一个符号变量 x 。 - 接着定义了一个复杂的表达式 expr ,它是 sin(x)^2 + cos(x)^2 。 - 使用 simplify 函数对 expr 进行简化操作。 - 最后,使用 disp 函数显示简化后的表达式。 在本示例中, simplify 函数应用了基本的三角恒等式 ( \sin^2(x) + \cos^2(x) = 1 ) 来简化表达式。

4.2.2 expand 函数与表达式展开

expand 函数在MATLAB中用于展开多项式或对数学表达式进行展开。比如,它能将 ((x + y)^2) 展开为 (x^2 + 2xy + y^2)。

下面的代码块演示了 expand 函数的使用:

syms x y;
expr = (x + y)^3;
expanded_expr = expand(expr);
disp(expanded_expr);

逻辑分析: - 定义了两个符号变量 x y 。 - 定义了一个多项式表达式 expr ,即 ((x + y)^3)。 - 使用 expand 函数对 expr 进行展开操作。 - 使用 disp 函数显示展开后的表达式。

执行后, expand 函数会将表达式展开为一个完全展开的多项式形式。

4.2.3 factor 函数进行因式分解

因式分解是将一个表达式表示为几个因子的乘积的过程。MATLAB的 factor 函数可以对符号表达式进行因式分解。

下面的代码展示了如何使用 factor 函数:

syms x;
expr = x^3 - 6*x^2 + 11*x - 6;
factored_expr = factor(expr);
disp(factored_expr);

逻辑分析: - 定义了一个符号变量 x 。 - 定义了一个三次多项式 expr ,其为 (x^3 - 6x^2 + 11x - 6)。 - 使用 factor 函数对 expr 进行因式分解。 - 使用 disp 函数显示因式分解后的表达式。

factor 函数应用了代数知识,将该多项式分解成 (x-1)(x-2)(x-3) 的形式。

至此,我们已经介绍了MATLAB中用于符号表达式简化的主要函数,以及它们的使用方法和效果。这些函数不仅能够简化符号计算,也使得相关领域工程师、学者、教育工作者和学生能够更快更直观地处理数学问题。在下章中,我们将通过具体的脚本代码示例来进一步演示这些函数的实用性和强大功能。

5. MATLAB脚本代码示例

5.1 初学者入门代码示例

5.1.1 第一个MATLAB脚本的编写

编写第一个MATLAB脚本是初学者接触MATLAB编程的第一步。在MATLAB中,脚本文件通常以 .m 作为文件扩展名。这个脚本是MATLAB解释器读取并逐行执行的纯文本文件。下面是一个简单的示例,展示了如何在MATLAB中编写脚本并执行它。

首先,打开MATLAB的编辑器(Editor),然后输入以下代码:

% 第一个MATLAB脚本示例
% 计算并显示两个数的和

a = 5;
b = 10;
sum = a + b;
disp(['The sum of ' num2str(a) ' and ' num2str(b) ' is: ' num2str(sum)]);

在编辑器中保存这个文件为 first_script.m 。然后,在MATLAB的命令窗口(Command Window)输入 first_script 并按回车执行这个脚本。该脚本会计算两个数值(5 和 10)的和,并使用 disp 函数显示结果。

脚本的组成非常简单,它由以下几部分组成: - a = 5; b = 10; 是变量赋值语句,用于创建和初始化变量。 - sum = a + b; 是一个执行加法运算的表达式,将变量 a b 的值相加,并将结果赋值给变量 sum 。 - disp 函数用于显示字符串和变量的值。 num2str 函数将数字转换为字符串,以便能够将它们组合成一条消息。

5.1.2 简单的符号表达式操作示例

符号计算是MATLAB中一个非常强大的功能,它允许我们对数学表达式进行符号操作。下面的示例将展示如何创建符号变量、构建一个简单的符号表达式,并对其进行操作。

% 符号表达式操作示例
syms x y; % 声明两个符号变量 x 和 y

expr = x^2 + y^2; % 创建一个符号表达式

% 将表达式中的 x 替换为 2,y 替换为 3
result = subs(expr, [x y], [2 3]);

% 使用 collect 函数合并同类项
simplified_expr = collect(result);

% 显示合并同类项后的结果
disp('Expression after collecting like terms:');
disp(simplified_expr);

在这个示例中,我们首先声明了两个符号变量 x y 。然后,我们构建了一个符号表达式 expr ,该表达式代表一个二次多项式。使用 subs 函数,我们将表达式中的 x 替换为 2,将 y 替换为 3。之后,我们利用 collect 函数合并结果中的同类项,得到简化后的表达式 simplified_expr 。最后,我们使用 disp 函数显示合并同类项后的结果。

5.2 高级示例与技巧分享

5.2.1 复杂表达式的构建与简化

在实际的工程项目中,经常需要处理复杂的数学表达式。下面是一个构建复杂表达式并对其简化的高级示例。

% 构建复杂表达式并简化示例
syms a b c d;

% 创建一个包含多个项的复杂表达式
complex_expr = a^3 + b^3 + c^3 + d^3 + 3*a*b*c + 3*a*b*d + 3*a*c*d + 3*b*c*d;

% 使用 factor 函数进行因式分解
factored_expr = factor(complex_expr);

% 使用 expand 函数展开表达式
expanded_expr = expand(factored_expr);

% 使用 simplify 函数进行进一步简化
simplified_expr = simplify(expanded_expr);

% 显示最终简化后的表达式
disp('The simplified expression is:');
disp(simplified_expr);

在这个示例中,我们首先声明了四个符号变量 a , b , c , d 。然后,我们创建了一个包含多个项的复杂表达式 complex_expr 。我们使用 factor 函数将表达式因式分解,然后使用 expand 函数将其展开,最后使用 simplify 函数进行进一步的表达式简化。简化后的表达式通过 disp 函数显示出来。

5.2.2 函数和脚本的组织结构优化

随着脚本代码的增长,良好的组织结构变得越来越重要。在MATLAB中,函数可以封装代码逻辑,提高代码的可读性和可重用性。下面是一个如何将脚本拆分为函数的示例。

% 函数封装示例:创建一个函数来计算圆的面积

% 创建一个名为 circle_area.m 的函数文件
% circle_area.m 文件内容
function area = circle_area(radius)
    % 计算并返回给定半径的圆的面积
    area = pi * radius^2;
end

在上面的示例中,我们创建了一个名为 circle_area 的函数,该函数接受一个参数 radius (圆的半径),并计算返回圆的面积。通过在函数文件中使用 function 关键字,我们定义了函数的名称和输入输出参数。函数体内部则是计算圆面积的逻辑。

为了调用这个函数,我们可以在MATLAB命令窗口中输入:

radius = 5;
result = circle_area(radius);
disp(['The area of the circle with radius ' num2str(radius) ' is: ' num2str(result)]);

这将计算半径为 5 的圆的面积,并显示结果。

以上示例展示了如何将简单的代码逻辑封装为函数,以及如何组织和优化MATLAB脚本代码。通过这种方式,您可以创建更加模块化和易于维护的代码库。

6. 同类项合并的实际应用和注意事项

6.1 同类项合并在数学问题中的应用

6.1.1 方程求解中的应用

在数学问题中,特别是在代数方程求解时,同类项合并是基础且关键的一步。通过 collect 函数,我们可以将方程中的同类项合并,简化方程,从而便于进一步求解。

例如,对于多项式方程 $3x^2 + 2x - x^2 + 4 = 0$,我们可以通过MATLAB代码合并同类项后求解:

syms x;
equation = 3*x^2 + 2*x - x^2 + 4;
collectEquation = collect(equation);
answer = solve(collectEquation, x);

在这段代码中, collect 函数首先将方程中的同类项合并,然后 solve 函数用于求解合并后的方程。执行上述代码,可以得到方程的根。

6.1.2 积分和微分运算中的应用

在积分和微分的运算中,同类项合并也可以简化计算过程。在微积分中,我们经常需要对表达式进行积分或微分,使用 collect 函数可以有效地整理表达式,使其更适合进行这些操作。

例如,对于表达式 $(x^2 + 2x + 1) dx$,我们希望先进行同类项合并,再进行积分:

syms x;
expression = (x^2 + 2*x + 1) * dx;
collectExpression = collect(expression);
integrated = int(collectExpression, x);

通过 collect 合并同类项后,我们可以得到一个更简洁的表达式,进而使用 int 函数进行积分运算。

6.2 使用中的常见问题和解决方法

6.2.1 性能优化策略

在处理大型或复杂的符号表达式时,性能可能会成为问题。使用 collect 函数时,可以通过设置 'Expansion' 选项来控制表达式的展开,有时候减少不必要的展开可以显著提高性能。

例如,可以这样控制展开级别:

syms x;
expr = expand((x+1)*(x+2)*(x+3));
collect(expr, 'Expansion', 'none');

在这里, 'Expansion' 选项设置为 'none' ,可以避免在合并同类项时进行不必要的展开。

6.2.2 错误排查与调试技巧

在使用 collect 函数或进行符号运算时,可能会遇到一些错误。MATLAB提供了丰富的错误信息来帮助用户排查问题。例如,如果变量没有被正确声明为符号变量,使用时可能会报错:

x = 3;
collect(x^2);

上面的代码会失败,并提示错误信息,因为 x 是数值类型而非符号类型。使用符号变量时,需要始终确保它们被正确声明:

syms x;
collect(x^2);

这样就不会出现错误,因为 x 被声明为符号变量。调试时,应首先检查变量声明是否正确,并注意任何错误信息中的提示。

通过这些实际应用案例和解决常见问题的技巧,可以更好地利用同类项合并在数学问题解决中的优势,同时避免和解决潜在的问题。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:MATLAB符号表达式提供了强大的数学运算能力,特别适用于复杂方程的求解和表达式的简化。本文详细介绍了如何使用MATLAB进行符号表达式的同类项合并,包括创建符号变量、构建表达式、利用 collect 函数进行同类项合并以及使用其他简化函数。同时,提供了一个简单实用的代码示例,以及一些在实际应用中的注意事项和MATLAB帮助文档的获取方式,帮助学习者熟练掌握符号表达式的操作。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

MATLAB在日常计算中的应用》由大量的MATLAB计算实例组成。通俗易懂,图文并茂,资料丰富,实用性强。提供大量MATLAB计算实例以及全部实例的M文件,方便读者使用。既适合初学者,也适合有一定MATLAB基础的爱好者或专业技术人员。 目录 第1章MATLAB基础知识 1.1MATLAB的发展历程 1.2MATLAB的特点 1.3MATLAB的桌面操作环境 1.4MATLAB的常量和变量 1.5MATLAB命令窗口应用例子 1.6小结 第2章多项式处理 2.1多项式的创建 2.2多项式的因式分解 2.3乘积展开成多项式 2.4合并同类项——对多项式合并同类项 2.5多项式加法(或减法) 2.6多项式乘法 2.7多项式除法 2.8求多项式的根 2.9多项式的替换 2.10符号简化 2.11分式通分 2.12求符号函数的反函数 2.13求符号表达式的复合运算 2.14将符号表达式转化为数值表达式 2.15将数值表达式转化为符号表达式 2.16小结 第3章MATLAB绘图 3.1二维绘图 3.1.1画函数图 3.1.2画饼状图 3.1.3画条形图 3.1.4手工绘图 3.1.5在极坐标下绘图 3.2三维绘图 3.2.1画球形图 3.2.2画圆柱体图 3.2.3画三维曲线图 3.2.4画直方图 3.2.5画饼状图 3.2.6画低通滤波器的三维网格图 3.2.7画三维平面图 3.2.8画瀑布图 3.2.9画伞状图 3.2.10画花蕊图 3.2.11画正立方体 3.3小结 第4章复数运算 4.1复数简介 4.1.1复数 4.1.2复数的四种表示形式 4.1.3复数的四则运算 4.1.4复数的其他运算 4.2复数运算程序1 4.2.1复数代数形式和极坐标形式间的相互转换程序 4.2.2求代数形式复数的倒数程序 4.2.3求任一复数平方根的程序 4.2.4求两个代数形式复数之积的程序 4.2.5求两个代数形式复数之商的程序 4.3复数运算程序2 4.3.1求复数的乘幂程序 4.3.2求复数的N次方根程序 4.3.3求复数的指数程序 4.3.4求复数的自然对数程序 4.3.5求复数的常用对数程序 4.3.6求复数的正弦程序 4.3.7求复数的余弦程序 4.3.8求复数的正切程序 4.4小结 第5章矩阵计算 5.1矩阵简介 5.1.1行列式 5.1.2矩阵的加法、乘法和矩阵的转置 5.1.3矩阵的除法——矩阵求逆 5.1.4矩阵的特征值和特征向量 5.2求行列式值 5.2.1求3阶行列式值 5.2.2求4阶行列式值 5.2.3求5阶行列式值 5.2.4求6阶行列式值 5.3矩阵转置 5.3.1将3阶矩阵转置 5.3.2将4阶矩阵转置 5.3.3将5阶矩阵转置 5.3.4将6阶矩阵转置 5.4矩阵相乘 5.4.1两个3阶实矩阵相乘 5.4.2两个4阶实矩阵相乘 5.4.3两个5阶实矩阵相乘 5.4.4一个4×5矩阵与一个5×3矩阵相乘 5.5矩阵求逆 5.5.1求2阶矩阵的逆阵 5.5.2求3阶矩阵的逆阵 5.5.3求4阶矩阵的逆阵 5.5.4求5阶矩阵的逆阵 5.5.5求6阶矩阵的逆阵 5.6求矩阵的特征值和特征向量 5.6.1求2阶矩阵的特征值和特征向量 5.6.2求3阶矩阵的特征值和特征向量 5.6.3求4阶矩阵的特征值和特征向量 5.7小结 第6章解多元一次线性方程组 6.1多元一次方程组简介 6.2解实系数多元一次方程组 6.2.1解实系数二元一次方程组 6.2.2解实系数三元一次方程组 6.2.3解实系数四元一次方程组 6.2.4解实系数五元一次方程组 6.2.5解实系数六元一次方程组 6.3解复系数多元一次方程组 6.3.1解复系数二元一次方程组 6.3.2解复系数三元一次方程组 6.3.3解复系数四元一次方程组 6.3.4解复系数五元一次方程组 6.3.5解复系数六元一次方程组 6.4小结 第7章解一元N次方程(上) 7.1实系数一元一次方程 7.2实系数一元二次方程 7.2.1实系数一元二次方程的求根公式介绍 7.2.2程序实例 7.3实系数一元三次方程 7.3.1卡尔丹公式 7.3.2盛金公式 7.3.3解题实例——解缺少二次项的实系数一元三次方程 7.3.4解题实例——解一般形式的实系数一元三次方程 7.4实系数一元四次方程 7.4.1一元四次方程解法介绍 7.4.2MATLAB解一元四次方程实例 7.5复系数一元一次方程 7.6复系数一元二次方程 7.6.1复系数一元二次方程解法介绍 7.6.2说明 7.6.3实例 7.7复系数一元三次方程 7.8复系数一元四次方程 7.9小结 第8章解一元N次方程(下) 8.1实系数一元代数方程 8.1.1求解实系数一元五次方程的根 8.1.2求解实系数一元六次方程的根 8.1.3求解实系数一元七次方程的根 8.1.4求解实系数一元八次方程的根 8.2复系数一元代数方程 8.2.1求解复系数一元五次方程的根 8.2.2求解复系数一元六次方程的根 8.2.3求解复系数一元七次方程的根 8.2.4求解复系数一元八次方程的根 8.3小结 第9章超越方程及非线性方程 9.1超越方程说明 9.2解超越方程 9.2.1解指数方程 9.2.2解对数方程 9.2.3解三角方程 9.2.4解无理方程 9.2.5解反三角函数方程 9.2.6解一般超越方程 9.3解非线性方程 9.3.1解一元非线性方程 9.3.2解二元非线性方程组 9.3.3解三元非线性方程组 9.4小结 第10章用图像法解实系数一元N次方程 10.1实系数一元一次方程 10.2实系数一元二次方程 10.3实系数一元三次方程 10.4实系数一元四次方程 10.5实系数一元五次方程 10.6实系数一元六次方程 10.7实系数一元七次方程 10.8实系数一元八次方程 10.9小结 第11章用图像法解实系数N元一次方程组 11.1实系数二元一次方程组 11.2实系数三元一次方程组 11.3实系数N元一次方程组 11.4小结 参考文献
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值