r语言集合补集_【必修一】高中数学必备知识点:8.补集及综合应用

9d55fbfc126653687960809451d618a3.png

全集 全集的定义及表示

(1)定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.

(2)符号表示:全集通常记作U.

疑难解析:

对全集概念的理解

“全集”是一个相对的概念,并不是固定不变的,它是依据具体的问题来加以选择的.例如:我们常把实数集R看作全集,而当我们在整数范围内研究问题时,就把整数集Z看作全集.

补集

59a75b364eb57badbf961fab60041457.png

补集的概念和性质

84224c1ecb81db378f96f3199039169a.png

疑难解析

理解补集应关注三点

(1)补集既是集合之间的一种关系,同时也是集合之间的一种运算.求集合A的补集的前提是A是全集U的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的两个概念.

(2)∁UA包含三层意思:①A⊆U;②∁UA是一个集合,且∁UA⊆U;③∁UA是由U中所有不属于A的元素构成的集合.

(3)若x∈U,则x∈A或x∈∁UA,二者必居其一.

补集运算

[例1] (1)(广东高考)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)= (  )

A.{x|x≥0}   B.{x|x≤1}

C.{x|0≤x≤1}       D.{x|0<x<1}

(2)设U={x|-5≤x

[解析] 

(1)A∪B={x|x≤0,或x≥1},

所以∁U(A∪B)={x|0

(2)法一:在集合U中,

∵x∈Z,

则x的值为-5,-4,-3,3,4,5,

∴U={-5,-4,-3,3,4,5}.

又∵A={x|x2-2x-15=0}={-3,5},

∴∁UA={-5,-4,3,4},∁UB={-5,-4,5}.

3c00230a66b233673af7ad4157385c96.png

求补集的方法

求给定集合A的补集通常利用补集的定义去求,从全集U中去掉属于集合A的元素后,由所有剩下的元素组成的集合即为A的补集.

例题:已知全集U,集合A={1,3,5,7},∁UA={2,4,6},∁UB={1,4,6},求集合B.

解:∵A={1,3,5,7},∁UA={2,4,6},

∴U={1,2,3,4,5,6,7}.又∵∁UB={1,4,6},

∴B={2,3,5,7}.

集合的交、并、补综合运算

1511254341e96b0be2feff0fa8d9fe1b.png

解题技巧

解决集合交、并、补运算的技巧

(1)如果所给集合是有限集,则先把集合中的元素一一列举出来,然后结合交集、并集、补集的定义来求解.在解答过程中常常借助于Venn图来求解.这样处理起来,相对来说比较直观、形象且解答时不易出错.

(2)如果所给集合是无限集,则常借助数轴,把已知集合及全集分别表示在数轴上,然后进行交、并、补集的运算.解答过程中要注意边界问题.

练习:

已知全集U={x|x<10,x∈N*},A={2,4,5,8},B={1,3,5,8},求

∁U(A∪B),∁U(A∩B),(∁UA)∩(∁UB),(∁UA)∪(∁UB).

解:∵A∪B={1,2,3,4,5,8},

U={1,2,3,4,5,6,7,8,9},

∴∁U(A∪B)={6,7,9}.

∵A∩B={5,8},

∴∁U(A∩B)={1,2,3,4,6,7,9}.

∵∁UA={1,3,6,7,9},∁UB={2,4,6,7,9},

∴(∁UA)∩(∁UB)={6,7,9},

(∁UA)∪(∁UB)={1,2,3,4,6,7,9}.

说明:作出Venn图,如图所示,由图形也可以直接观察出来结果.

b2d4d43359ad98fbfd953636681f75ac.png

补集的综合应用

a36ed848d2b744041470dd16fbe94d74.png

b378279b983cbaceace8bd29db08dee4.png

解题技巧

利用补集求参数应注意两点

(1)与集合的交、并、补运算有关的参数问题一般利用数轴求解,涉及集合间关系时不要忘掉空集的情形.

(2)不等式中的等号在补集中能否取到,要引起重视,还要注意补集是全集的子集.

练习题:

已知集合A={x|x0}.若A∩(∁RB)=∅,求实数a的取值范围.

解:∵B={x|x0},

∴∁RB={x|-1≤x≤0},

因而要使A∩(∁RB)=∅,结合数轴分析(如图),

可得a≤-1.

1f19c43ebf8eecc09d33e26bb151ec65.png

即实数a的取值范围是{a|a≤-1}.

易错分析

1.补集思想的综合应用

[典例] (12分)已知集合A={x|x2-4x+2m+6=0},B={x|x<0},若A∩B≠∅,求实数m的取值范围.

解题流程

8b92b6e8f4141f9ab29ee092b2da64bb.png

d2cbac105a7b4b1bdb9ed32a1763a54d.png

4ac965e6b9414840ba7ae4580aa780e4.png

练习:

2a6cb860b1d1e8644d52aa74d1485f39.png

a605983b26ea526410221730c457d47c.png

End

阅读推荐

1.20省高考分数线及一分一段表汇总!你目前的分数排全省多少名?

2.多省高考分数线公布!另附志愿填报完全版指南,一分也不允许你浪费!

3.高考成绩出来了,请不要打扰别人的幸福

4.一份超实用的志愿填报攻略,待查收!

▐ 来源:本文综合来源于网络,如有侵权请联系删除!

▐ 标签:高考地理  备战高考    知识汇总

▐ 更多内容请关注微信公众号平台:高考数学ID:gkdl100

014a26c2020814a92a623021d4f5d7fd.gif

78b22b0b8023feec5897138818ac9fc2.gif点击“阅读原文”,做学霸

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值