(1)定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.
(2)符号表示:全集通常记作U.
疑难解析:
对全集概念的理解
“全集”是一个相对的概念,并不是固定不变的,它是依据具体的问题来加以选择的.例如:我们常把实数集R看作全集,而当我们在整数范围内研究问题时,就把整数集Z看作全集.
补集补集的概念和性质
疑难解析
理解补集应关注三点
(1)补集既是集合之间的一种关系,同时也是集合之间的一种运算.求集合A的补集的前提是A是全集U的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的两个概念.
(2)∁UA包含三层意思:①A⊆U;②∁UA是一个集合,且∁UA⊆U;③∁UA是由U中所有不属于A的元素构成的集合.
(3)若x∈U,则x∈A或x∈∁UA,二者必居其一.
补集运算[例1] (1)(广东高考)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)= ( )
A.{x|x≥0} B.{x|x≤1}
C.{x|0≤x≤1} D.{x|0<x<1}
(2)设U={x|-5≤x
[解析]
(1)A∪B={x|x≤0,或x≥1},
所以∁U(A∪B)={x|0
(2)法一:在集合U中,
∵x∈Z,
则x的值为-5,-4,-3,3,4,5,
∴U={-5,-4,-3,3,4,5}.
又∵A={x|x2-2x-15=0}={-3,5},
∴∁UA={-5,-4,3,4},∁UB={-5,-4,5}.
求给定集合A的补集通常利用补集的定义去求,从全集U中去掉属于集合A的元素后,由所有剩下的元素组成的集合即为A的补集.
例题:已知全集U,集合A={1,3,5,7},∁UA={2,4,6},∁UB={1,4,6},求集合B.
解:∵A={1,3,5,7},∁UA={2,4,6},
∴U={1,2,3,4,5,6,7}.又∵∁UB={1,4,6},
∴B={2,3,5,7}.
集合的交、并、补综合运算解题技巧
解决集合交、并、补运算的技巧
(1)如果所给集合是有限集,则先把集合中的元素一一列举出来,然后结合交集、并集、补集的定义来求解.在解答过程中常常借助于Venn图来求解.这样处理起来,相对来说比较直观、形象且解答时不易出错.
(2)如果所给集合是无限集,则常借助数轴,把已知集合及全集分别表示在数轴上,然后进行交、并、补集的运算.解答过程中要注意边界问题.
练习:
已知全集U={x|x<10,x∈N*},A={2,4,5,8},B={1,3,5,8},求
∁U(A∪B),∁U(A∩B),(∁UA)∩(∁UB),(∁UA)∪(∁UB).
解:∵A∪B={1,2,3,4,5,8},
U={1,2,3,4,5,6,7,8,9},
∴∁U(A∪B)={6,7,9}.
∵A∩B={5,8},
∴∁U(A∩B)={1,2,3,4,6,7,9}.
∵∁UA={1,3,6,7,9},∁UB={2,4,6,7,9},
∴(∁UA)∩(∁UB)={6,7,9},
(∁UA)∪(∁UB)={1,2,3,4,6,7,9}.
说明:作出Venn图,如图所示,由图形也可以直接观察出来结果.
解题技巧
利用补集求参数应注意两点
(1)与集合的交、并、补运算有关的参数问题一般利用数轴求解,涉及集合间关系时不要忘掉空集的情形.
(2)不等式中的等号在补集中能否取到,要引起重视,还要注意补集是全集的子集.
练习题:
已知集合A={x|x0}.若A∩(∁RB)=∅,求实数a的取值范围.
解:∵B={x|x0},
∴∁RB={x|-1≤x≤0},
因而要使A∩(∁RB)=∅,结合数轴分析(如图),
可得a≤-1.
即实数a的取值范围是{a|a≤-1}.
易错分析1.补集思想的综合应用
[典例] (12分)已知集合A={x|x2-4x+2m+6=0},B={x|x<0},若A∩B≠∅,求实数m的取值范围.
解题流程练习:
End
阅读推荐1.20省高考分数线及一分一段表汇总!你目前的分数排全省多少名?
2.多省高考分数线公布!另附志愿填报完全版指南,一分也不允许你浪费!
3.高考成绩出来了,请不要打扰别人的幸福
4.一份超实用的志愿填报攻略,待查收!
▐ 来源:本文综合来源于网络,如有侵权请联系删除!
▐ 标签:高考地理 备战高考 知识汇总
▐ 更多内容请关注微信公众号平台:高考数学ID:gkdl100
点击“阅读原文”,做学霸