实数r的补集_实数集不可数的拓扑证明, 即Baire纲定理的一个初等应用

继对角线证法和区间套证法(https://zhuanlan.zhihu.com/p/51203067)之后, 我又读到了一个实数集不可数的证明. 这个证明有点"高射炮打蚊子"的感觉, 读起来挺酷的, 而且也是继组合(对角线证法), 分析(区间套证法), 之后的又一个证明, 用到了初等拓扑学的内容.

所需的知识点如下:

定义: 令

为一个拓扑空间, 我们称子集
为稠密(dense), 当且仅当
的closure为
. 更一般地, 对于子集
, 我们称
中稠密, 当且仅当对于每个非空开集
, 如果
, 则
. 例: 有理数集在实数集中稠密.

定义:

是无处稠密(nowhere dense), 当且仅当对于每个非空开集
, 我们都有
不在
中稠密.

命题:

是dense open, 当且仅当
是closed nowhere dense.

定义:

是meager的(不知道中文是啥, 贫集? 瘦集? 薄集?), 当且仅当
是可数个无处稠密集的并集.

定义: 一个拓扑空间

是Baire空间, 当且仅当其中可数个稠密开集的交集也是稠密的.

Baire纲定理(Baire Category Theorem)是如下表述:

每一个complete metric space都是一个Baire space.

同时recall: 实数集(加上它的order topology)是一个complete metric space. 也就是说, 实数集是一个Baire空间.


我们想要证明: 实数集

不可数. 为了证明这个命题, 我们需要一个引理:

引理: 如果

为非空开集, 那么
则不是meager的.

证明: 令

为非空开集, 并且假设
是meager的, 我们将推导出矛盾. 因为我们假设了
为meager, 不妨将
写作
,
在此处代表自然数集. 根据meager的定义, 其中每一个
都是nowhere dense. (感谢评论区@小清新 指出的一处不严谨的地方, 这里的
不一定是闭集. 但我们不妨将
替换为它们的closure,并且注意到无处稠密集的closure仍然是无处稠密. 此外, 我们将接下来的"
"替换为"
"). 此时根据文章开头的一个命题, 每一个
都是某个稠密开集
的补集. 也就是说,
. 此时, 根据Baire纲定理,
为稠密集. 又因
为非空开集, 则根据定义,
. 但
, 所以得到矛盾, 引理得证.

我们现在可以证明命题: 实数集

不可数.

证明: 首先我们留意对于每一个实数

, 它的单点集
都是无处稠密(nowhere dense)的. 此时我们假设
可数, 即
(
是可数个单点集的并集). 由于每一个单点集都是无处稠密, 根据定义我们可知
是meager的. 根据上面的引理, 我们可知
不可能是非空开集. 这个结果与开集的定义矛盾, 所以我们的命题得证.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值