r语言集合补集_数学从集合说起——初阶版(一)

前言:

   数学这门科目自然的学习顺序比本来是从算术学到代数,最后再学解析几何。这种学习顺序的特点是循序渐进,对大多数自学者很友善,不会感觉到什么难度。但是坏处也很明显,知识被拆的过于零散,必然会打断知识点之间的连贯性——教科书上的安排就是学一下代数,又学一下几何。这样就不能迅速学完完整的一个模块的内容,导致过于分散自学者的精力,这种学习顺序还有加以改进的地方。

在做思维导图整理数学知识点的时候,把数学内容整理成了三大模块,既算术、初等代数、几何。遵循这种逻辑顺序的写法是从系统到局部——从集合到算术,再到代数和几何。跟上一种看似没什么区别,只是把高一数学第一课的集合提前了,实际上这跨越了很多知识点。数学学习,第一时间接触数学,就应该明白集合的概念,这样才方便读者以一定的高度的视角去学习数学各个知识点。

正式写之前还得简明介绍一下我们即将要学习的内容。

初等数学共分为三大板块,分别是“算术、初等代数、几何”。

其中算术是小学内容,是最为简单也是最为重要的部分,我见过很多人会分析题目,但就是卡在计算,化简,变形等这些基础操作——这些东西掌握不够熟练,到后面的代数要吃大亏的,所以这部分的练习极为重要。

代数是核心,也是算术的推广,但本质上还是算术那一套。只是从算术具体简单的数字计算到用字母+数字组成的算式代替数进行计算,其复杂性增加不少。其次代数还是解析几何的基础,总之数学中超过2/3的内容跟代数有关。

最后是几何,几何包括平面几何,立体几何,向量,解析几何,就这么些内容,几何题难度一般都很高,因为其抽象性,还考察空间想象能力等一系列玄学能力,不像代数那样根据规则直接套公式就可以。

最后要说一下数学最简单的教程是什么?我还得推荐教科书,教材十分简洁,一个章节的知识点可能连3000字数都不到就能解释清楚,还配有大量的图文例子。但可惜的是教科书的编者总是喜欢考验学生,把一些重要的知识点给隐藏了,要让学生自己去推理,这些知识点必须由有经验的人单独拿出来讲,这就是特别坑的地方。

以学习速度来说,肯定是老师直接把全部的知识点都给你解释清楚了这种方式最快,要论学习质量,教材的编者和我自然是鼓励学生发展自我探究能力,能根据已知信息和正确的推理方式,自行进行思考推理,最后得出知识点。在具体执行过程中,我没有那么的大精力去安排这类情节,所以只能对每个知识点进行尽可能地解释。

正文:

一、     集合

集合概述:

(一)   为什么需要学习集合?——明确讨论对象。

当年初学集合时,一阵迷糊,愣是没发现学这玩意有什么用,但好在内容简单,学的轻松,只不过一到做题时,一道道如此简单的数学题只要掺入了各种代数学的知识时,比如函数,就下不了笔了。当时还真就奇了怪了,集合这么简单的东西,怎么连个课后习题也做不了,后来仔细分析才发现我不是没学好“集合”,而是没学好初中的代数知识。到了后来学的多了点,才知道高中所有数学都是建立在集合之上。

集合这玩意本身很简单,但是用这套语言“组合而成的题目”就要比原来初中的函数和方程要难上许多。

至从学习了集合,高中的数学题目相比于初中数学发生了根本性的变化。

初中题目是给一个方程,让你算,或是函数让你给出解析式。

而到了高中就成了,求定义域范围,求值域范围,求单调性等等。

最根本的改变就在于由原来只需计算出来某一个确定的值,求解这个值的时候考验的是计算能力;到了现在需要确定一个范围,求解这个范围时,所需要的能力由计算能力转变成了分析能力。

也正是因为从重计算转变成了重分析,才有了集合学习的需要——“数学分析过程”是极为严谨的,分析的过程我们必须明确讨论范围,不同范围内所求得的值不同,不能出现讨论对象模糊的情况。

考虑到萌新没有函数基础,这里举一个超级简单的方程作为例子,比如x^2=9,请问x是何值时等式成立?大部分人都会答出x=±3时,该等式成立。如果这道题如果增添一个前提条件在自然数范围内求解(自然数不包含负数),那这时的x就只能取正数。

在学习集合之前,初中碰到这道数学题,我们会理所当然的得出±3(默认实数范围求解)。而在高中学过集合之后再碰到这题,我们就必须开始考虑到讨论范围,是在什么数系范围求解——不同数系中所得到答案数量不同——自然数系只有3,而在实数系中有两个答案±3。

数学正是从集合开始,开始有了一点“分析“的影子,从计算某个具体的数值,到从给出数据以及前提条件分析得出某个范围,趋势。正因如此,明确讨论对象的需要促使集合的“诞生”。

(二)集合定义和表达

1)     集合定义:

任何一个新概念的学习都应该从定义开始!

关于集合的概念在逻辑学中也有过讨论,暂且先不说官方定义,我这里的民间定义是“人为设定条件,限制的一个范围”,满足条件的事物称为属于该范围的元素,不满足条件的称之为不属于该范围圈的元素——数学上把讨论对象都称作为元素,把这个有前提条件限制的范围称作集合。比如哲醒大课的关注者,这就形成了一个集合。只要满足前提条件关注了哲醒大课的都属于这个集合的元素,没有关注的就不属于。

扯远一点就让我想起了一句话——世界是由金木水火土这五种元素组成的,元素的叫法也许就是这么来的吧,当然世界是由元素周期表那几百个已知和未知元素组成的,而非金木水火土。

集合官方定义:“集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。其中,构成集合的这些对象则称为该集合的元素

集合表示

数学有一个叫法叫做数理逻辑,数理逻辑最大的特点之一是以符号为语言,集合属于数理逻辑的内容,在数学语言表达上自然也遵循以上规则,以符号替代概念为主要表达方式。

例如在集合定义中,我们习惯用A、B、C等大写字母来表达一个集合概念,用小写的a、b、c或x、y来表示元素概念,用∈这个符号来表示属于的概念。

如果要说a元素属于A集合,用集合语言来表就是a∈A。                           

集合表达方式主要分为四种

列举:当集合元素有限个时,也就是数的清时,我们采用列举法。

f191e9a06bc9ef4b6cc755c86268e1d2.png

描述:当集合内的元素无限个时,这是我们采用描述元素所具备的共同特征来描述

比如大于10的所有数——有点常识都知道这样条件限制下的集合内元素是无限个不可能数的完,此时我们采用(x∈R,x>10),其中的的x是未知数,可以说它是大于10 的任何数,用来替代集合内的元素。(大括号不好打,读者请自行多多参考教科书上的格式正确运用集合表达式)

c4a2b1464b658766336ad99670114ddc.png

图像:韦恩图,这就是逻辑学也提到过的圈圈,用圆形来表达集合之间的关系,这种表达方式的好处是更加直观,当集合之间的关系特别复杂时,可以尝试利用韦恩图来解决集合问题。比如表达元素a属于这个集合和元素b不属于这个集合。韦恩图不仅仅是用来表达元素与集合之间的关系,更多的时候是用来表达集合与集合之间的关系,所以后面部分内容我会大量应用韦恩图来表示。

fe2056be2438b817cec88feb482a36a7.png

符号:又叫做特殊字母表示法。

e3df00aa1cb0d0886bf13a064380873a.png

e8a3a0ec4367bebcf9fc5de833a7d9cc.png

  有一些特殊的集合,由于经常使用,所以我们给了特殊的符号专属。

以上表达方式,描述法,图像法,特殊符号法都经常会应用到,但其中最为主要的表达方式还得是描述法,以上几个特殊的数系符号可以说是在讨论任何一个数集时都会出现。

(三)集合的属性:性质和关系

2)     集合的性质(特点,特性)

集合的性质主要有三点:

确定性:集合界限必须明确,不允许界限条件模糊,比如最帅的人构成的一个集合,帅的定义标准模糊,不能构成集合。

互异性:不允许出现重复元素。

无序性:集合内元素排序没有要求——可以任意排序。

这三点其实没啥好说的,明白就好。

3)     集合的关系

集合的关系主要分为两类关系。

一类是集合与元素之间的关系;另一类是集合与集合之间的关系。集合与元素之间的关系只有属于跟不属于两种关系,没什么好说的。

集合与集合之间关系值得一说,集合间的关系有两种,既相等和包含。相等就是两个集合内元素一摸一样,包含关系逻辑学上也说过,。需要注意的是关于包含关系需要注意的两个地方有:包含跟包含于,子集跟真子集。

包含跟包含于类似于我们语言中的主动跟被动的关系,本质上并没有区别,只是不同的说法,就是做题的时候一定要认真审题——A包含了B,可以说成B包含于A,于的意思是“在”, B包含于A也就是在说B包含在A(内);

fc15d574288e3cf1c0b5355238328e74.png

两个集合中,被包含的那个小集合,我们称之为那个大集合的子集。子集分为(相等)子集跟真子集——当AB两个集合相等时(集合内元素种类和个数一摸一样)我们称之为AB互为对方的子集。对,集合相等时你可以说它们相等,也可以说它们互为对方子集。

但是当他们属于另一种情况,B中元素A中全有,而A中元素B中没有时,我们就叫做B是A的真子集,韦恩图表示如下——大圈A包含小圈B所有元素。

946fa344b7d58c4a4727d272efb2df95.png

最后要提到的一个概念就是集合中的“零”——空集,空集表示什么也没有的集合。这一部分没什么更多的解释就按照规定来吧。关于它的定理有:空集是任何集合的子集,这玩意在基础集合题目中经常出现,后面会说的。

(四)运算:基本运算,运算律(采用类比推理)

    提到运算,我们第一想到的应该是算术中的加减乘除乘方开方六种基本运算,根据类比推理我们合理的推测对于集合之间是否也存在运算——由一个或一个以上的集合通过某种规则构造出一个新集合的规则。

   这种规则(运算)确实存在集合中,但只存在三种基本运算——交、并、补。

交集定义为:取两个或多个集合中元素相交的那一部分(相同元素)构成的新集合(不重合的那一部分全部舍去)韦恩图如下

f7f929a0831c54ec8f5587edd7a20885.png

并集定义为:取两个或多个集合中的所有元素从而构建出的一个新集合(合并两个集合,出现相同元素时只保留一个)韦恩图如下

08246d6294ba7dd4ce92263b7b7c6ae3.png

补集定义为:对于一个单独的集合而言,补集就是一个集合中舍去一部分元素之后剩下的元素所组成的集合,数学表达为CUA(U集合排除掉A集合后剩下的元素),韦恩图如下。

052023f6564629f43a37d58c58bfa538.png

集合间的运算律:

  关于集合运算律这块内容,本质上是算术中运算律的推广,它们遵循同样的规则,运算律的主要用途是用来在复杂的计算中实现简便计算。教材上只是稍微提了一下,这块内容一般出现在高考第一二次复习。它是集合中重难点,当多个集合之间出现运算时,我们第一时间就要想到运算律,而非去用交并补蛮算。

    由于我没有先前写算术,这部分内容可能对读者会造成一定的压力,所以这部分内容可以选择性跳过,在看完算术篇的内容且经过一定时间的专项训练之后再来学习该部分内容。

集合常用运算律为:

d37927d8d83ca2a5a5c375add1f5bc22.png

    以上运算律相信只要认真学习过训练过的人,理解起来都不是什么难事,但理解并不意味着会应用,真正的集合题目中不会这么简单,所以我们需要对这部分进行专项训练。这部分内容将在下部分内容给出。

最后对相关概念的数学符号进行总结展示:

e21fab7488a2525910a7af84ea7f2aff.png

   集合初阶内容大致就到这了,本来要写映射的,但想了下还是拆开来写了,数学第三篇就是集合应用的内容。

一般读者可以利用前些时候提到过的文档资料搜索方法,自行搜索相关训练材料。写完后感觉,用文字来写数学内容还是太勉强了,特别是符号这一块,有一些符号不好找,后面的内容可能会考虑用视频的方式来表达。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值