matlab进行稳定性分析,求解线性方程组 - 稳定双共轭梯度法

通过为 bicgstab 提供函数句柄来求解线性方程组,用函数句柄代替系数矩阵 A 来计算 A*x。

gallery 生成的 Wilkinson 测试矩阵之一是 21×21 三对角矩阵。预览该矩阵。

A = gallery('wilk',21)

A = 21×21

10 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 9 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 3 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0

Wilkinson 矩阵有特殊的结构,因此您可以用函数句柄来表示 A*x 运算。当 A 乘以向量时,所得向量中的大多数元素为零。结果中的非零元素对应于 A 的非零三对角元素。此外,只有主对角线具有不等于 1 的非零值。

表达式 Ax 变为:

Ax=[1010⋯⋯⋯001910001810⋮⋮0171001610⋮⋮0151001410⋮⋮013⋱000⋱⋱100⋯⋯⋯0110][x1x2x3x4x5⋮⋮x21]=[10x1+x2x1+9x2+x3x2+8x3+x4⋮x19+9x20+x21x20+10x21]。

结果向量可以写为三个向量的和:

Ax=[0+10x1+x2x1+9x2+x3x2+8x3+x4⋮x19+9x20+x21x20+10x21+0]=[0x1⋮x20]+[10x19x2⋮10x21]+[x2⋮x210]。

在 MATLAB® 中,编写一个函数来创建这些向量并将它们相加,从而给出 A*x 的值:

function y = afun(x)

y = [0; x(1:20)] + ...

[(10:-1:0)'; (1:10)'].*x + ...

[x(2:21); 0];

end

(该函数作为局部函数保存在示例的末尾。)

现在,通过为 bicgstab 提供用于计算 A*x 的函数句柄,求解线性方程组 Ax=b。使用容差 1e-12 和 50 次迭代。

b = ones(21,1);

tol = 1e-12;

maxit = 50;

x1 = bicgstab(@afun,b,tol,maxit)

bicgstab converged at iteration 11.5 to a solution with relative residual 5.2e-13.

x1 = 21×1

0.0910

0.0899

0.0999

0.1109

0.1241

0.1443

0.1544

0.2383

0.1309

0.5000

检查 afun(x1) 是否产生由 1 组成的向量。

afun(x1)

ans = 21×1

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

局部函数

function y = afun(x)

y = [0; x(1:20)] + ...

[(10:-1:0)'; (1:10)'].*x + ...

[x(2:21); 0];

end

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
当使用共轭梯度法解决线性方程组时,通常需要进行一些预处理步骤以提高求解效率和数值稳定性。以下是一个使用MATLAB进行预处理共轭梯度法求解线性方程组的示例: ```matlab % 创建示例线性方程组 Ax = b n = 100; % 方程组的维度 A = gallery('poisson', n); % 创建一个具有对角占优性质的矩阵 b = ones(n, 1); % 预处理步骤 M = diag(diag(A)); % 对角预处理,构造对角矩阵作为预处理矩阵 % 共轭梯度法求解线性方程组 x0 = zeros(n, 1); % 初始解 tol = 1e-6; % 迭代收敛精度 max_iter = n; % 最大迭代次数 [x, flag, relres, iter] = pcg(A, b, tol, max_iter, M, M', x0); % 输出结果 disp(['共轭梯度法迭代次数:', num2str(iter)]); disp(['相对残差:', num2str(relres)]); disp(['是否收敛:', num2str(flag == 0)]); % 可选:计算精确解并计算误差 x_exact = A\b; error = norm(x - x_exact); disp(['求解误差:', num2str(error)]); ``` 这个示例中,我们首先创建了一个具有对角占优性质的线性方程组Ax=b(使用`gallery`函数创建了一个Poisson方程组的系数矩阵),然后定义了预处理矩阵M为A的对角矩阵。接下来,我们使用MATLAB中的`pcg`函数进行共轭梯度法求解,并指定预处理矩阵M和其转置M'。最后,我们输出了迭代次数、相对残差和是否收敛,并可选地计算求解误差。 请注意,这只是一个简单的示例,实际应用中可能需要根据具体问题进行适当的预处理选择和参数调整。预处理方法有很多种,如不完全Cholesky分解、不完全LU分解等,具体选择取决于问题的特点和求解效果的需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值