稳定双共轭梯度法BiCGSTAB流程

求解Ax=b时,如若A不是正定对称矩阵时,使用CG或者SSOR等迭代方法效果不是很好。在使用BiCGSTAB求解时,即便是主对角元素值很小,效果也较好。

下面是无预处理的稳定双共轭梯度法用于处理非正定对称矩阵的流程:


1.      \large r_0 = b - Ax_0

2.在\large <\hat{r} ,r>=0的前提下,设置\large \hat{r}   一般设置\large \hat{r} = r

3.初始化\large \rho _0=\alpha = \omega_0=0\large v_0=P_0=0,

4.for i   in  1------>n:

        5.\large \rho_i = <\hat{r_0},r_{i-1}>

        6.\large \beta = (\frac{\rho_i}{\rho_{i-1}})\times(\frac{\alpha}{\omega_{i-1}})

        7.\large P_i = r_{i-1}+\beta (P_{i-1}-\omega_{i-1}v_{i-1})

        8.\large v_i=AP_i

        9.\large \alpha = \frac{\rho_i}{<\hat{r}_0,v_i>}

        10.\large x_i = x_{i-1}+\alpha P_i

        11.\large s = r_{i-1}-\alpha v_i

        12.\large t = As

        13.\large \omega_i = \frac{<t,s>}{<t,t>}\large \omega _i = \frac{<t,s>}{<t,t>}

        14.\large x_i = x_i+ \omega_i s

        15.\large r_i = s-\omega_i t

        16.\large i= i+1

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值