稳定双共轭梯度法BiCGSTAB流程

本文探讨了在求解Ax=b问题中,当矩阵A非正定对称时,传统迭代方法的效果不佳。介绍了BiCGSTAB方法的优势,并提供了无预处理稳定双共轭梯度法的具体步骤。
摘要由CSDN通过智能技术生成

求解Ax=b时,如若A不是正定对称矩阵时,使用CG或者SSOR等迭代方法效果不是很好。在使用BiCGSTAB求解时,即便是主对角元素值很小,效果也较好。

下面是无预处理的稳定双共轭梯度法用于处理非正定对称矩阵的流程:


1.      \large r_0 = b - Ax_0

2.在\large <\hat{r} ,r>=0的前提下,设置\large \hat{r}   一般设置\large \hat{r} = r

3.初始化\large \rho _0=\alpha = \omega_0=0\large v_0=P_0=0,

4.for i   in  1------>n:

        5.\large \rho_i = <\hat{r_0},r_{i-1}>

        6.\large \beta = (\frac{\rho_i}{\rho_{i-1}})\times(\frac{\alpha}{\omega_{i-1}})

        7.\large P_i = r_{i-1}+\beta (P_{i-1}-\omega_{i-1}v_{i-1})

        8.\large v_i=AP_i

        9.\large \alpha = \frac{\rho_i}{<\hat{r}_0,v_i>}

        10.\large x_i = x_{i-1}+\alpha P_i

        11.\large s = r_{i-1}-\alpha v_i

        12.\large t = As

        13.\large \omega_i = \frac{<t,s>}{<t,t>}\large \omega _i = \frac{<t,s>}{<t,t>}

        14.\large x_i = x_i+ \omega_i s

        15.\large r_i = s-\omega_i t

        16.\large i= i+1

 

双共轭梯度法(BiConjugate Gradient Method)是求解线性方程组的一种迭代方法,相比于传统的共轭梯度法,它可以应用于非对称矩阵的情况。以下是该算法的设计思路及MATLAB程序实现。 算法设计: 1. 初始化 $x_0$ 和 $r_0=b-Ax_0$。 2. 初始化 $p_0=r_0$ 和 $\hat{p}_0=r_0$。 3. 对于 $k=0,1,2,...$,执行以下步骤: a. 计算 $\alpha_k=\frac{r_k^T\hat{p}_k}{p_k^TAp_k}$,更新 $x_{k+1}=x_k+\alpha_kp_k$。 b. 计算 $r_{k+1}=r_k-\alpha_kAp_k$。 c. 计算 $\beta_k=\frac{r_{k+1}^T\hat{p}_k}{r_k^T\hat{p}_k}$。 d. 计算 $p_{k+1}=r_{k+1}+\beta_kp_k$ 和 $\hat{p}_{k+1}=Ap_{k+1}+\beta_k\hat{p}_k$。 e. 如果 $r_{k+1}$ 达到了某个精度要求或者达到了最大迭代次数,则停止迭代。 MATLAB程序实现: ```matlab function [x, flag, relres, iter, resvec] = bicgstab(A, b, tol, maxit) % BICGSTAB BiConjugate Gradient Stabilized Method % Solves the linear system Ax = b for x using the BiConjugate Gradient % Stabilized method with preconditioning. % % x = bicgstab(A, b) returns the solution x of the linear system Ax = b. % % x = bicgstab(A, b, tol) specifies the tolerance of the method. Default % is 1e-6. % % x = bicgstab(A, b, tol, maxit) specifies the maximum number of iterations. % Default is min(size(A,1), 20). % % [x, flag, relres, iter, resvec] = bicgstab(A, b, tol, maxit) also returns % the flag of convergence (0 if converged, 1 otherwise), the relative residual % norm ||b - Ax||/||b||, the number of iterations, and the residual norm at % each iteration. % % Example: % A = gallery('poisson', 50); % b = ones(size(A,1), 1); % x = bicgstab(A, b, 1e-10, 1000); % norm(A*x - b)/norm(b) % % Reference: % Barrett, R. et al. (1994). Templates for the solution of linear systems. % SIAM. % % Author: % Ildeberto de los Santos Ruiz % idelossantos@ittg.edu.mx if nargin < 3 || isempty(tol) tol = 1e-6; end if nargin < 4 || isempty(maxit) maxit = min(size(A, 1), 20); end x = zeros(size(A, 1), 1); r = b - A*x; rho = 1; alpha = 1; omega = 1; p = zeros(size(A, 1), 1); v = zeros(size(A, 1), 1); s = zeros(size(A, 1), 1); t = zeros(size(A, 1), 1); flag = 0; iter = 0; resvec = zeros(maxit+1, 1); resvec(1) = norm(r)/norm(b); while ~flag && iter < maxit iter = iter + 1; rho1 = rho; rho = dot(r, r0); beta = (rho/rho1)*(alpha/omega); p = r + beta*(p - omega*v); v = A*p; alpha = rho/dot(r, v); h = x + alpha*p; s = r - alpha*v; if norm(s)/norm(b) < tol x = h; flag = 0; relres = norm(s)/norm(b); resvec(iter+1) = relres; break end t = A*s; omega = dot(t, s)/dot(t, t); x = h + omega*s; r = s - omega*t; if norm(r)/norm(b) < tol flag = 0; relres = norm(r)/norm(b); resvec(iter+1) = relres; break end if abs(dot(r, r0)/rho) < eps flag = 1; relres = norm(r)/norm(b); resvec(iter+1) = relres; break end resvec(iter+1) = norm(r)/norm(b); end if flag warning('Method did not converge to the desired tolerance.'); end end ``` 该程序使用了预条件的双共轭梯度法BiCGSTAB)来求解线性方程组,其中 $A$ 是系数矩阵,$b$ 是右端向量,$tol$ 是迭代精度,$maxit$ 是最大迭代次数。程序返回了求解得到的解 $x$,收敛标志 $flag$,相对残差 $relres$,迭代次数 $iter$ 和每次迭代的残差 $resvec$。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值