当公式展示不完全时,记得向左←滑动哦!
本节对于伴随矩阵的基本定义和性质进行了总结,是我们在考研中容易忽略的一部分内容,希望大家重视!!!
定义 1. 设
定义 A 的伴随矩阵 A*为:其中 是 的代数余子式.
定理 1. m × n 矩阵 A 的秩为 r 的充分与必要条件为:存在 m 阶满秩矩阵 P 与 n 阶满秩矩阵 Q 使得
其中 Er 为 r 阶单位矩阵.
定理2.
若A可逆,由此可得
伴随矩阵的性质:
1.(2017汕头大学)
证明:(1)当 时,有
(2) 当 |AB|=0 时,令
则存在无穷多个x的值使得 都可逆,于是有上面两边矩阵的元素都是x的多项式,且有无穷多个x的值使得等式成立. 从而等式恒成立.于是当x=0时,即得结论成立.
2.设 A 为 n 阶方阵,则
k 是一个数,特别的,
证明:若 kA可逆,则
若