可逆矩阵性质总结_高等代数 | 第四章 矩阵伴随矩阵

本文总结了矩阵伴随的性质,包括可逆矩阵的伴随性质、行列式的证明和应用,强调这些内容在考研中的重要性。通过多个定理和证明,阐述了当矩阵可逆或不可逆时如何利用伴随矩阵进行计算,并提供了相关习题以供练习。
摘要由CSDN通过智能技术生成

当公式展示不完全时,记得向左←滑动哦!

本节对于伴随矩阵的基本定义和性质进行了总结,是我们在考研中容易忽略的一部分内容,希望大家重视!!!

定义 1. 设

定义 A 的伴随矩阵 A*为:

其中 是 的代数余子式.

定理 1.  m × n 矩阵 A 的秩为 r 的充分与必要条件为:存在 m 阶满秩矩阵 P 与 n 阶满秩矩阵 Q 使得

其中 Er 为 r 阶单位矩阵.

定理2.

若A可逆,由此可得

伴随矩阵的性质:

1.(2017汕头大学)

证明:(1)当 时,有

(2) 当 |AB|=0 时,令

则存在无穷多个x的值使得 都可逆,于是有

上面两边矩阵的元素都是x的多项式,且有无穷多个x的值使得等式成立. 从而等式恒成立.于是当x=0时,即得结论成立.

2.设 A 为 n 阶方阵,则

k 是一个数,特别的,

证明:若 kA可逆,则

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值