高等代数 矩阵的运算(第4章)2 逆,分块,正交,欧几里得空间,线性映射

一.可逆矩阵(4.4)

注意:可逆矩阵和逆矩阵都只能是方阵

1.定义
(1)可逆矩阵:
在这里插入图片描述
(2)逆矩阵:
在这里插入图片描述
2.求逆矩阵
(1)伴随矩阵:
在这里插入图片描述
(2)求逆矩阵:

定理1:数域 K K K n n n阶矩阵 A A A可逆的充要条件是: ∣ A ∣ ≠ 0 |A|≠0 A=0 A A A可逆时: A − 1 = 1 ∣ A ∣ A ∗ ( 7 ) A^{-1}=\frac{1}{|A|}A^*\qquad(7) A1=A1A(7)
在这里插入图片描述
在这里插入图片描述
特别地,当 A = [ a b c d ] A=\left[\begin{matrix}a&b\\c&d\end{matrix}\right] A=[acbd] A A A可逆当且仅当 ∣ A ∣ = a d − b c ≠ 0 |A|=ad-bc≠0 A=adbc=0 A A A可逆时,有 A − 1 = 1 a d − b c [ d − b − c a ] A^{-1}=\frac{1}{ad-bc}\left[\begin{matrix}d&-b\\-c&a\end{matrix}\right] A1=adbc1[dcba]

(3)其他矩阵可逆的充要条件:

由定理1还可推出 n n n阶矩阵 A A A可逆的其他一些充要条件:
\quad 数域 K K K上的 n n n阶矩阵 A A A可逆
A A A为满秩矩阵
A A A的行(列)向量组线性无关
A A A的行(列)向量组为 K n K^n Kn的1个基
A A A的行(列)空间等于 K n K^n Kn

(4)可逆矩阵与初等矩阵的关系:

性质6:矩阵 A A A可逆的充要条件是: A A A可以表示成一些初等矩阵的乘积
在这里插入图片描述

3.可逆矩阵的性质
(1)乘积矩阵为 I I I的2个矩阵互为逆矩阵:

命题1:设 A , B A,B A,B都是数域 K K K上的 n n n阶矩阵,如果 A B = I AB=I AB=I那么 A , B A,B A,B都是可逆矩阵,并且 A − 1 = B , B − 1 = A A^{-1}=B,B^{-1}=A A1=B,B1=A
在这里插入图片描述
在这里插入图片描述

(2)单位矩阵可逆:

性质1:单位矩阵 I I I可逆,且 I − 1 = I I^{-1}=I I1=I

(3)逆矩阵必定可逆:

性质2:如果 A A A可逆,那么 A − 1 A^{-1} A1也可逆,且 ( A − 1 ) − 1 = A (A^{-1})^{-1}=A (A1)1=A

(4)可逆矩阵的乘积也可逆:

性质3:如果 n n n阶矩阵 A , B A,B A,B都可逆,那么 A B AB AB也可逆,且 ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1
在这里插入图片描述
推广:如果 n n n阶矩阵 A 1 , A 2 . . . A s A_1,A_2...A_s A1,A2...As都可逆,那么 A 1 A 2 . . . A s A_1A_2...A_s A1A2...As也可逆,且 ( A 1 A 2 . . . A s ) − 1 = A s − 1 . . . A 2 − 1 A 1 − 1 (A_1A_2...A_s)^{-1}=A_s^{-1}...A_2^{-1}A_1^{-1} (A1A2...As)1=As1...A21A11

(5)可逆矩阵的转置也可逆:

性质4:如果 A A A可逆,那么 A ′ A' A也可逆,且 ( A ′ ) − 1 = ( A − 1 ) ′ (A')^{-1}=(A^{-1})' (A)1=(A1)
在这里插入图片描述

(6)可逆矩阵的简化行阶梯型矩阵是单位矩阵:

性质5:可逆矩阵经过初等行变换化成的简化行阶梯型矩阵一定是单位矩阵
在这里插入图片描述

(7)左(右)乘可逆矩阵不改变矩阵的秩:

性质7:用1个可逆矩阵左(右)乘矩阵 A A A,不改变 A A A的秩
在这里插入图片描述

4.初等变换法:

  • 又称高斯-若尔当消元法

在这里插入图片描述

5.利用逆矩阵求解线性方程组:
在这里插入图片描述
二.矩阵的分块(4.5)
1.概念:
在这里插入图片描述
2.分块矩阵的线性运算与转置:
在这里插入图片描述
在这里插入图片描述
3.分块矩阵的乘法
(1)分块矩阵可乘的条件:

①左矩阵的列组数等于右矩阵的行组数
②左矩阵的每个列组所含列数等于右矩阵相应的行组所含行数

(2)分块矩阵的乘积:

满足上述2个条件的分块矩阵相乘时按照矩阵乘法法则进行,即设 A = ( a i j ) s × n , B = ( b i j ) s × n A=(a_{ij})_{s×n},B=(b_{ij})_{s×n} A=(aij)s×n,B=(bij)s×n,则 n 1   . . .   n t m 1   . . .   m t s 1 . . . s u [ A 11 . . . A 1 t . . . . . . . . . A u 1 . . . A u t ] [ B 11 . . . B 1 t . . . . . . . . . B u 1 . . . B u t ] n 1 . . . n u = [ A 11 B 11 + A 12 B 21 + . . . + A 1 t B t 1 . . . A 11 B 1 v + A 12 B 2 v + . . . + A 1 t B t v A 21 B 11 + A 22 B 21 + . . . + A 2 t B t 1 . . . A 21 B 1 v + A 22 B 2 v + . . . + A 2 t B t v . . . . . . . . . A u 1 B 11 + A u 2 B 21 + . . . + A u t B t 1 . . . A u 1 B 1 v + A u 2 B 2 v + . . . + A u t B t v ] n_1\:\quad...\:\quad n_t\qquad m_1\quad\:...\quad\:m_t\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad\\\begin{matrix}s_1\\...\\s_u\end{matrix}\left[\begin{matrix}A_{11}&...&A_{1t}\\...&...&...\\A_{u1}&...&A_{ut}\end{matrix}\right]\left[\begin{matrix}B_{11}&...&B_{1t}\\...&...&...\\B_{u1}&...&B_{ut}\end{matrix}\right]\begin{matrix}n_1\\...\\n_u\end{matrix}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad\\=\left[\begin{matrix}A_{11}B_{11}+A_{12}B_{21}+...+A_{1t}B_{t1}&...&A_{11}B_{1v}+A_{12}B_{2v}+...+A_{1t}B_{tv}\\A_{21}B_{11}+A_{22}B_{21}+...+A_{2t}B_{t1}&...&A_{21}B_{1v}+A_{22}B_{2v}+...+A_{2t}B_{tv}\\...&...&...\\A_{u1}B_{11}+A_{u2}B_{21}+...+A_{ut}B_{t1}&...&A_{u1}B_{1v}+A_{u2}B_{2v}+...+A_{ut}B_{tv}\end{matrix}\right] n1...ntm1...mts1...suA11...Au1.........A1t...AutB11...Bu1.........B1t...Butn1...nu=A11B11+A12B21+...+A1tBt1A21B11+A22B21+...+A2tBt1...Au1B11+Au2B21+...+AutBt1............A11B1v+A12B2v+...+A1tBtvA21B1v+A22B2v+...+A2tBtv...Au1B1v+Au2B2v+...+AutBtv
在这里插入图片描述
在这里插入图片描述

4.分块矩阵的应用:

命题2:设A是 s × n s×n s×n矩阵,B是 n × m n×m n×m矩阵,B的列向量组为 β 1 , β 2 . . . β m β_1,β_2...β_m β1,β2...βm,则 A B = A ( β 1 , β 2 . . . β m ) = ( A β 1 , A β 2 . . . A β m ) AB=A(β_1,β_2...β_m)=(Aβ_1,Aβ_2...Aβ_m) AB=A(β1,β2...βm)=(Aβ1,Aβ2...Aβm)
在这里插入图片描述
在这里插入图片描述

推论1:设 A s × n ≠ 0. B n × m A_{s×n}≠0.B_{n×m} As×n=0.Bn×m的列向量组是 β 1 , β 2 . . . β m β_1,β_2...β_m β1,β2...βm,则 A B = 0 ⇔ β 1 , β 2 . . . β m 都 是 齐 次 线 性 方 程 组 A x = 0 的 解 AB=0⇔β_1,β_2...β_m都是齐次线性方程组Ax=0的解 AB=0β1,β2...βm线Ax=0
在这里插入图片描述
推论2:设 A s × n ≠ 0. B n × m A_{s×n}≠0.B_{n×m} As×n=0.Bn×m的列向量组是 β 1 , β 2 . . . β m β_1,β_2...β_m β1,β2...βm, C s × m C_{s×m} Cs×m的列向量组是 δ 1 , δ . . . δ m δ_1,δ_...δ_m δ1,δ...δm,则 A B = C ⇔ β j 是 线 性 方 程 组 A x = δ j 的 1 个 解   ( j = 1 , 2... m ) AB=C⇔β_j是线性方程组Ax=δ_j的1个解\,(j=1,2...m) AB=Cβj线Ax=δj1(j=1,2...m)
在这里插入图片描述

利用线性方程组求逆矩阵:
在这里插入图片描述

解矩阵方程:
在这里插入图片描述

5.分块矩阵的初等变换与分块初等矩阵
(1)分块矩阵的初等变换:
在这里插入图片描述
在这里插入图片描述
(2)分块初等矩阵:
在这里插入图片描述

6.分块上(下)三角矩阵
(1)概念:
在这里插入图片描述
(2)分块上(下)三角矩阵的行列式:
在这里插入图片描述
在这里插入图片描述
(3)分块上三角矩阵的逆矩阵:

命题3:设 A = ∣ A 1 A 3 0 A 2 ∣ A=\left|\begin{matrix}A_1&A_3\\0&A_2\end{matrix}\right| A=A10A3A2其中 A 1 , A 2 A_1,A_2 A1,A2都是方阵,则 A A A可逆当且仅当 A 1 , A 2 A_1,A_2 A1,A2都可逆,此时 A − 1 = [ A 1 − 1 − A 1 − 1 A 3 A 2 − 1 0 A 2 − 1 ] A^{-1}=\left[\begin{matrix}A_1^{-1}&-A_1^{-1}A_3A_2^{-1}\\0&A_2^{-1}\end{matrix}\right] A1=[A110A11A3A21A21]
在这里插入图片描述
从该命题看出:可逆的分块上三角矩阵的逆矩阵仍是分块上三角矩阵

7.其他分块矩阵的行列式:

命题4:设 A , B A,B A,B分别是 s × n , n × s s×n,n×s s×n,n×s矩阵,则 ( 1 ) ∣ I n B A I s ∣ = ∣ I s − A B ∣ ( 2 ) ∣ I n B A I s ∣ = ∣ I n − B A ∣ ( 3 ) ∣ I s − A B ∣ = ∣ I n − B A ∣ (1)\left|\begin{matrix}I_n&B\\A&I_s\end{matrix}\right|=|I_s-AB|\qquad\qquad(2)\left|\begin{matrix}I_n&B\\A&I_s\end{matrix}\right|=|I_n-BA|\\(3)|I_s-AB|=|I_n-BA|\qquad\qquad\qquad\qquad\qquad\qquad\qquad (1)InABIs=IsAB(2)InABIs=InBA(3)IsAB=InBA
在这里插入图片描述

三.正交矩阵与欧几里得空间(4.6)
1.正交矩阵
(1)定义:
在这里插入图片描述

正交矩阵的列向量为单位向量且不同的列向量相互正交

(2)正交矩阵的性质:

命题5:
\quad 实数域上 n n n阶矩阵 A A A是正交矩阵
A ′ A = I A'A=I AA=I
A A A可逆,且 A − 1 = A ′ A^{-1}=A' A1=A
A A ′ = I AA'=I AA=I

正交矩阵还具有以下性质:
I I I是正交矩阵
②若 A , B A,B A,B都是 n n n阶正交矩阵,则 A B AB AB也是正交矩阵
③若 A A A是正交矩阵,则 A − 1 ( A^{-1}( A1( A ′ ) A') A)也是正交矩阵
④若 A A A是正交矩阵,则 ∣ A ∣ = ± 1 |A|=±1 A=±1
在这里插入图片描述

(3)正交矩阵的判定:

命题6:设实数域上 n n n阶矩阵 A A A的行向量组为 γ 1 , γ 2 . . . γ n γ_1,γ_2...γ_n γ1,γ2...γn,列向量组为 α 1 , α 2 . . . α n α_1,α_2...α_n α1,α2...αn,则
A A A为正交矩阵当且仅当 A A A的行向量组满足: γ i γ j ′ = { 1 当 i = j 0 当 i ≠ j γ_iγ_j'=\begin{cases}1\quad当i=j\\0\quad当i≠j\end{cases} γiγj={1i=j0i=j
A A A为正交矩阵当且仅当 A A A的列向量组满足: α i α j ′ = { 1 当 i = j 0 当 i ≠ j α_iα_j'=\begin{cases}1\quad当i=j\\0\quad当i≠j\end{cases} αiαj={1i=j0i=j
在这里插入图片描述
利用 K r o n e c k e r Kronecker Kronecker记号 δ i j δ_{ij} δij,其含义是: δ i j = { 1 当 i = j 0 当 i ≠ j δ_{ij}=\begin{cases}1\quad当i=j\\0\quad当i≠j\end{cases} δij={1i=j0i=j则该命题可简记为: γ i γ j ′ = δ i j   ( 1 ≤ i , j ≤ n ) ( 1 ) α i α j ′ = δ i j   ( 1 ≤ i , j ≤ n ) ( 2 ) γ_iγ_j'=δ_{ij}\,(1≤i,j≤n)\qquad(1)\\α_iα_j'=δ_{ij}\,(1≤i,j≤n)\qquad(2) γiγj=δij(1i,jn)(1)αiαj=δij(1i,jn)(2)

2.内积
(1)定义:
在这里插入图片描述

如果 α , β α,β α,β是列向量,那么标准内积可以写成 ( α , β ) = α ′ β ( 5 ) (α,β)=α'β\qquad(5) (α,β)=αβ(5)

(2)性质:

( α , β ) = ( β , α )   ( 对 称 性 ) (α,β)=(β,α)\,(对称性) (α,β)=(β,α)()
( α + γ , β ) = ( α , β ) + ( γ , β ) , ( k α , β ) = k ( α , β )   ( 线 性 性 质 ) (α+γ,β)=(α,β)+(γ,β),(kα,β)=k(α,β)\,(线性性质) (α+γ,β)=(α,β)+(γ,β),(kα,β)=k(α,β)(线)
( α , α ) ≥ 0 , 等 号 当 且 仅 当 α = 0 时 成 立   ( 正 定 性 ) (α,α)≥0,等号当且仅当α=0时成立\,(正定性) (α,α)0,α=0()
由性质①②立即得 ( k 1 α 1 + k 2 α 2 , β ) = k 1 ( α 1 , β ) + k 2 ( α 2 , β ) ( α , k 1 β 1 + k 2 β 2 ) = k 1 ( α , β 1 ) + k 2 ( α , β 2 ) (k_1α_1+k_2α_2,β)=k_1(α_1,β)+k_2(α_2,β)\\(α,k_1β_1+k_2β_2)=k_1(α,β_1)+k_2(α,β_2) (k1α1+k2α2,β)=k1(α1,β)+k2(α2,β)(α,k1β1+k2β2)=k1(α,β1)+k2(α,β2)

3.欧几里得空间
(1)定义与向量长度:
在这里插入图片描述

欧几里得空间就是有度量(即内积)的向量空间 R n R^n Rn,又称内积空间

(2)单位化:
在这里插入图片描述
(3)正交向量组:
在这里插入图片描述

命题7:欧几里得空间 R n R^n Rn中,正交向量组一定是线性无关的
在这里插入图片描述

4.正交基与正交化
(1)正交基:
在这里插入图片描述
(2)正交矩阵的判定:

命题8:实数域上的 n n n阶矩阵 A A A是正交矩阵的充要条件是: A A A的行(列)向量组是欧几里得空间 R n R^n Rn的1个标准正交基
在这里插入图片描述
该命题指出:构建正交矩阵等价于构建标准正交基

(3)施密特正交化(Schmidt Orthogonalization):

定理2:设 α 1 , α 2 . . . α s α_1,α_2...α_s α1,α2...αs是欧几里得空间 R n R^n Rn中1个线性无关的向量组,令 β 1 = α 1 β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 1 ) β 1 . . . β s = α s − ∑ j = 1 s − 1 ( α s , β j ) ( β j , β j ) β j ( 6 ) \begin{matrix}β_1=α_1\\β_2=α_2-\frac{(α_2,β_1)}{(β_1,β_1)}β_1\\...\\β_s=α_s-\displaystyle\sum_{j=1}^{s-1}\frac{(α_s,β_j)}{(β_j,β_j)}β_j\end{matrix}\qquad(6) β1=α1β2=α2(β1,β1)(α2,β1)β1...βs=αsj=1s1(βj,βj)(αs,βj)βj(6) β 1 , β 2 . . . β s β_1,β_2...β_s β1,β2...βs是正交向量组,且 β 1 , β 2 . . . β s β_1,β_2...β_s β1,β2...βs α 1 , α 2 . . . α s α_1,α_2...α_s α1,α2...αs等价
在这里插入图片描述
在这里插入图片描述
单位化:
在这里插入图片描述

四. K n K^n Kn K s K^s Ks的线性映射(4.7)
1.映射:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
2.映射的运算
(1)映射的和成:
在这里插入图片描述

定理3:结合律适用于映射的乘法,即如果 h : S → S ′ , g : S ′ → S ′ ′ , f : S ′ ′ → S ′ ′ ′ h:S→S',g:S'→S'',f:S''→S''' h:SS,g:SS,f:SS,那么 f ( g h ) = ( f g ) h f(gh)=(fg)h f(gh)=(fg)h
在这里插入图片描述
注意:交换律不适用于映射的乘法

命题8:对于任意1个映射 f : S → S ′ f:S→S' f:SS,有 f 1 S = f , 1 S ′ f = f f1_S=f,1_{S'}f=f f1S=f,1Sf=f
在这里插入图片描述

(2)逆映射:
在这里插入图片描述

命题9:如果 f f f可逆,那么其逆映射唯一,把 f f f的逆映射记为 f − 1 f^{-1} f1
在这里插入图片描述
在这里插入图片描述

定理4:映射 f : S → S ′ f:S→S' f:SS可逆的充要条件是: f f f是双射
在这里插入图片描述

3.线性映射
(1)定义:
在这里插入图片描述
(2)乘以1个矩阵是线性映射:
在这里插入图片描述

事实1:
\quad 数域 K K K n n n元线性方程组 A x = β Ax=β Ax=β
∃ γ ∈ K n ∃γ∈K^n γKn,使得 A γ = β Aγ=β Aγ=β
∃ γ ∈ K n ∃γ∈K^n γKn,使得 Ꭿ ( γ ) = β Ꭿ(γ)=β (γ)=β
β ∈ I m   Ꭿ β∈Im\,Ꭿ βIm
由该定理看出:使线性方程组 A x = β Ax=β Ax=β有解的 β β β组成的集合是线性映射 Ꭿ ( α ) = A α Ꭿ(α)=Aα (α)=Aα的象
由此立即得出:
事实2:
设数域 K K K s × n s×n s×n矩阵 A A A的列向量组是 α 1 , α 2 . . . α s α_1,α_2...α_s α1,α2...αs,则
β ∈ I m   Ꭿ \quadβ∈Im\,Ꭿ βIm
⇔线性方程组 A x = β Ax=β Ax=β有解
β ∈ < α 1 , α 2 . . . α n > β∈<α_1,α_2...α_n> β<α1,α2...αn>
因此 I m   Ꭿ = < α 1 , α 2 . . . α n > ( 2 ) Im\,Ꭿ=<α_1,α_2...α_n>\qquad(2) Im=<α1,α2...αn>(2)即:由式(1)定义的线性映射 Ꭿ Ꭿ 的象(值域)等于矩阵 A A A的列空间,从而 I m   Ꭿ Im\,Ꭿ Im K s K^s Ks的1个子空间

(3)映射的核:

事实3:设数域 K K K上齐次线性方程组 A x = 0 Ax=0 Ax=0的解空间是 W W W,则 η ∈ W ⇔ A η = 0 ⇔ Ꭿ ( η ) = 0 η∈W⇔Aη=0⇔Ꭿ(η)=0 ηWAη=0(η)=0
受此启发,引出下述概念:
在这里插入图片描述

映射的核的维数:
在这里插入图片描述

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值