深入探索生成式与判别式人工智能

深入探索生成式与判别式人工智能

背景简介

人工智能(AI)是当今科技领域最热门的话题之一,它不仅改变了我们的工作方式,也正在逐步改变我们的生活。AI的世界非常广阔,其中包含了两大类:生成式人工智能(Generative AI)和判别式人工智能(Discriminative AI)。本书重点探讨生成式AI,但为了全面理解,我们有必要先了解AI的基础知识。

什么是人工智能?

人工智能一词常被广泛提及,但它包含的范围远比我们所理解的要广。人工智能是机器学习(ML)的上层概念,而深度学习(DL)又是机器学习的更深层次。非自学习程序如专家系统并不从数据中学习,与机器学习和深度学习有着本质的不同。

AI的训练过程

AI系统训练过程中包括三个基本步骤:训练、验证和评估。在训练过程中,AI模型通过与实际标记的可爱程度进行比较,调整可训练参数以提高准确性。验证步骤确保训练方向正确,并通过独立验证数据检查训练进度。在模型达到预期准确度后,将进入预测模式。

AI Model in Training 图1.2 在监督式机器学习模型训练中,涉及两个主要步骤:预测训练数据点,然后根据预测的准确性有意义地更新可训练参数。

生成式与判别式AI

生成式人工智能与判别式人工智能在方法和应用上有着显著差异。生成式AI主要采用无监督学习,而判别式AI则侧重于区分不同数据类别。生成式AI的目标是创造复杂、逼真的图像、声音或文本,而判别式AI则专注于分类、回归、聚类、降维和强化学习等任务。

生成式AI十年后的变化

生成式AI在经过大约十年的发展后,开始展现出其巨大的潜力。它主要基于无监督学习,发展速度虽然相对较慢,但其应用潜力巨大。

AI in a Nutshell 图1.3 监督式机器学习模型中的预测模式。

监督学习与无监督学习

监督学习在AI领域中应用广泛,通过带有标签的数据集训练模型。相比之下,无监督学习则需要算法自行识别数据中的模式,这在某些情况下更具挑战性。

无监督学习的优势与挑战

尽管无监督学习的应用不如监督学习广泛,但它在识别数据模式、理解顾客购买行为等方面展现了独特的价值。

总结与启发

通过对人工智能不同类别的深入分析,我们能够更好地理解AI技术的进步,以及这些进步对社会和工业界带来的深远影响。生成式AI和判别式AI的对比揭示了AI领域的多样性,并指出了未来研究与应用的发展方向。

未来,我们可以期待生成式AI在艺术创作、个性化产品推荐、复杂问题解决等领域带来更多创新应用,而判别式AI将继续在自然语言处理、推荐系统和计算机视觉等传统领域保持其领先地位。

为了更深入地理解机器学习和深度学习的技术细节,推荐阅读《深度学习》一书,它为理论生成式人工智能提供了坚实的基础,是人工智能领域的经典之作。

通过本文的阅读,我们不仅了解了AI的分类与训练过程,还对AI的未来应用和挑战有了更深刻的认识。这将有助于我们更好地适应AI技术带来的变革,并在人工智能的新时代中找到自己的位置。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值