【机器学习】先验概率与后验概率

从原因到结果的论证称为“先验的”,而从结果到原因的论证称为“后验的”。

先验概率是指根据以往经验和分析得到的概率,如全概率公式中的 ,它往往作为“由因求果”问题中的“因”出现。

后验概率是指在得到“结果”的信息后重新修正的概率,是“执果寻因”问题中的“因” 。后验概率是基于新的信息,修正原来的先验概率后所获得的更接近实际情况的概率估计。先验概率和后验概率是相对的。如果以后还有新的信息引入,更新了现在所谓的后验概率,得到了新的概率值,那么这个新的概率值被称为后验概率。(个人理解:就是不断训练后得到的预测值)

后验概率是指通过调查或其它方式获取新的附加信息,利用贝叶斯公式对先验概率进行修正,而后得到的概率。

先验概率的计算比较简单,没有使用贝叶斯公式;而后验概率的计算,要使用贝叶斯公式。

贝叶斯公式:

先验概率 ( Prior probability):先验概率是在缺乏某个事实的情况下描述一个变量;而后验概率是在考虑了一个事实之后的条件概率。先验概率通常是经验丰富的专家的纯主观的估计。比如在法国大选中女候选罗雅尔的支持率 p,  在进行民意调查之前,可以先验概率来表达这个不确定性。

后验概率 ( posterior probability):Def: Probability of outcomes of an experiment after it has been performed and a certain event has occured.  后验概率可以根据通过Bayes定理,用先验概率和似然函数计算出来。

补充一些概率公式:


举例子?

验前概率就是通常说的概率,验后概率是一种条件概率,但条件概率不一定是验后概率。贝叶斯公式是由验前概率求验后概率的公式。
举一个简单的例子:一口袋里有3只红球、2只白球,采用不放回方式摸取,求:
⑴ 第一次摸到红球(记作A)的概率;
⑵ 第二次摸到红球(记作B)的概率;
已知第二次摸到了红球,求第一次摸到的是红球的概率
解:⑴ P(A)=3/5,这就是验前概率;
⑵ P(B)=P(A)P(B|A)+P(A逆)P(B|A逆)=3/5;
⑶ P(A|B)=P(A)P(B|A)/P(B)=1/2,这就是验后概率。

备注:(2)的求解

全概率公式概率论中的重要公式,它将对一复杂事件A的概率求解问题转化为了在不同情况下发生的简单事件的概率的求和问题。

内容:如果事件B1、B2、B3…Bn 构成一个完备事件组,即它们两两互不相容,其和为全集;并且P(Bi)大于0,则对任一事件A有 P(A)=P(A|B1)P(B1) + P(A|B2)P(B2) + ... + P(A|Bn)P(Bn)。

特别地,对于任意两随机事件A和B,有如下成立:

其中A和A逆为对立事件。

全概率可概括为:

1)选小偷,谁去偷
2)选定的小偷作为条件,那么他去偷的条件概率是什么

贝叶斯概率可概括为:

前面是问总体看来被偷的概率是多少,现在是知道了总体被偷了这件事,概率并不知道,问你个更有意思的问题,像是侦探断案:是哪个小偷的偷的,计算每个小偷偷的概率。


参考:

先验概率与后验概率的区别(老迷惑了)

全概率公式和贝叶斯公式的理解(这个!)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值