matlab bp神经网络的诊断,基于-BP神经网络的故障诊断方法.doc

《智能控制基础》

研究生课程设计报告

题 目 基于BP神经网络的故障诊断方法

学 院 机械与汽车工程学院

专业班级 车辆工程

学 号 221601852020

学生姓名 李跃轩

指导教师 武晓莉

完成日期 2016年12月10日

目录

TOC \o "1-3" \h \z \u HYPERLINK \l "_Toc469212109" 1 设计概述 PAGEREF _Toc469212109 \h 2

HYPERLINK \l "_Toc469212110" 1.1研究对象介绍 PAGEREF _Toc469212110 \h 2

HYPERLINK \l "_Toc469212111" 1.2设计内容及目标 PAGEREF _Toc469212111 \h 2

HYPERLINK \l "_Toc469212112" 2 设计原理、方法及步骤 PAGEREF _Toc469212112 \h 3

HYPERLINK \l "_Toc469212113" 2.1基于BP算法的神经网络模型 PAGEREF _Toc469212113 \h 3

HYPERLINK \l "_Toc469212114" 2.2 神经网络信息融合故障诊断步骤4

HYPERLINK \l "_Toc469212115" 3 结果及分析6

HYPERLINK \l "_Toc469212116" 3.1数据仿真6

HYPERLINK \l "_Toc469212117" 3.2 结果分析 PAGEREF _Toc469212117 \h 8

HYPERLINK \l "_Toc469212118" 4 设计小结 PA

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
现有训练集数据,1000 × 7,如下: xxxxxxxxxxxxxxxxxxxx 有测试集数据,100 × 7,如下: xxxxxxxxxxxxxxxxxxxx 以上数据分别是从某系统采集的数据,  训练数据集中,分别是采集的数据和标注结果,其中1、2分别表示该系统有无故障;  测试数据集中,分别是采集的数据和真实结果,其中1、2分别表示该系统有无故障; 现在需要使用训练数据集训练BP神经网络,然后用训练好的神经网络对测试数据集进行测试,并与真实结果进行对比,最终分析出神经网络的性能。 % --- Executes on button press in pushbutton6. function pushbutton6_Callback(hObject, eventdata, handles) % hObject handle to pushbutton6 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global output_test inputn_train outputn_train inputn_test ... outputps BPoutput_test xunlian_num Error input_train output_train %创建网络 %获得gui_set中值 num_yinhan=str2num(get(findobj('tag','edit_yinhan'),'string')); TF=get(findobj('tag','transfer'),'string'); %传递函数 valueTF=get(findobj('tag','transfer'),'value'); TF=TF{valueTF}; BTF=get(findobj('tag','train'),'string'); %训练函数 valueBTF=get(findobj('tag','train'),'value'); BTF=BTF{valueBTF}; BLF=get(findobj('tag','learn'),'string'); %学习函数 valueBLF=get(findobj('tag','learn'),'value'); BLF=BLF{valueBLF}; tic;%启动一个定时器 net=newff(inputn_train,outputn_train,num_yinhan,{TF},BTF,BLF); net.trainParam.epochs=str2num(get(findobj('tag','cishu'),'string')); net.trainParam.goal=str2num(get(findobj('tag','goal'),'string')); net.trainParam.lr=str2num(get(findobj('tag','rate'),'string')); net=train(net,inputn_train,outputn_train); an=sim(net,inputn_test); t=toc;%关闭定时器,获取程序运行时间 %网络输出反归一化

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值