拐点,又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使千寻文化(7qianxun.com)切线穿越曲线的点。驻点又称为平稳点、稳定点或临界点是函数的一阶导数为零。
驻店和拐点的区别
驻点:一阶导数为0的点。
拐点:函数凹凸性发生变化的点。
如何判定驻点:只需要函数在某点一阶可导,且一阶导数值为0。
如何判定拐点:1,若函数二阶可导,某点二阶导数值为零,两端二阶导数值异号。2,若函数三阶可导,则二阶导数为0,三阶导数不为0的点就是拐点。
拐点的求法
可以按下列步骤来判断区间I上的连续曲线y=f(x)的拐点:
⑴求f''(x);
⑵令f''(x)=0,解出此方程在区间I内的实根,并求出在区间I内f''(x)不存在的点;
⑶对于⑵中求出的每一个实根或二阶导数不存在的点X0,检查f''(x)在X0左右两侧邻近的符号,那么当两侧的符号相反时,点(X0,f(X0))是拐点,当两侧的符号相同时,点(X0,f(
X0))不是拐点。
驻点
在微积分,驻点又称为平稳点、稳定点或临界点是函数的一阶导数为零,即在“这一点”,函数的输出值停止增加或减少。对于一维函数的图像,驻点的切线平行于x轴。对于二维函数的图像,驻点的切平面平行于xy平面。
值得注意的是,一个函数的驻点不一定是这个函数的极值点(考虑到这一点左右一阶导数符号不改变的情况);反过来,在某设定区域内,一个函数的极值点也不一定是这个函数的驻点(考虑到边界条件),驻点(红色)与拐点(蓝色),这图像的驻点都是局部极大值或局部极小值
——————————————本文(完)——————————————
——网页顶部有“搜索栏”,输入“关键词”后按“回车键”即可浏览更多文章——
❤❤《拐点和驻点的区别是什么》文章结语:每一篇优秀的文章都凝聚了平时日积月累的知识量储备,花费大量的时间心血才能写出来的。励志文学网始终践行着“授人以鱼,不如授之以渔”的原则。
❤❤在此,千寻文化网的主编真心希望收录的某篇文章能给迷茫中的网友们带去无形的力量,即使失败了也要想办法重新站起来,“守得云开见红日,拨开云雾见明月”!
❤❤平时多学习些自己感兴趣的知识和技能,说不定今天打下夯实的基础日后学有所用,助力将来的某一天能登上人生巅峰又能迎娶白富美,功成名就之时也千万别忘记多为自己的国家做贡献!
❤❤本站微信公众号“千寻文化”,喜欢“七千寻文化_追梦传奇人生网”的朋友们可以搜索添加下,欢迎转载收藏您觉得有用的文章,居然还真有人在文章下方点击“赏”字后打赏支持了本站,谢谢哈。