列运算_5.1 Rn点列极限的性质、运算

7823365674bdd688d6e3bd2d3ee82628.png

一、 数列极限的基本运算

1.1 Prop 数列:极限保号性

内,

(1)

(2)

证:(1)的证明类比极限唯一性:
显然,

(2)为(1)的逆否命题.

1.2 Thm 数列:极限四则运算(包含运算结果的存在性)

(1)

证:

由三角不等式:

(2)

证:
由收敛列有界性,有
.

由三角不等式:

(3)

证:由(2)知只需证
.
WLOG,设
, 则

此外,
, 则当
.

1.3 Corollary 数列:解极限方程(含不存在推断)

,则有:

(1)

不存在
不存在. (可证逆否)

(2)

不存在
不存在. (可证逆否)

(3)

不存在
不存在或
.(可证逆否)

证:以第二个情况为例:记
, 由定理1.1

时,
可能不存在,因为
没有上界,即
可能无限接近零.

1.4 Corollary 四则运算可推广到有限次四则运算

二、数列:无穷小列、无穷大列

2.1 Def 无穷小列、无穷大列

(1) 无穷小列:

(1) 无穷大列定义见第二章的一般定义: 记作
.

2.2 Thm 无穷小与无穷大等价关系


证: 根据极限定义
(两个定义一体两面)

2.3 Corollary 无穷小列等价于其模列也是无穷小列


证: 只需证
.
由定义得证.

2.4 Thm 无穷小×有界量=无穷小;无穷大×仅有有限个0的有界列=无穷大

(1)

(2)

证: (1) 由
有界,有
,则根据极限定义
.

(2) 由
有界, 仅有有限
, 则
有定义, 且有界. 由(1)结合2.2 Thm 无穷小与无穷大等价关系可得.

2.5 无穷大的四则运算


(1) 若两极限同号,
,异号为不定;

(2)
,同号为正,异号为负;

(3)
不一定存在,所以不定.

三、数列的夹逼准则

3.1 Lemma 单边常数夹逼准则


证:极限定义结合条件知:

又有
, 则
.

3.2 Thm 夹逼准则


证:由极限四则运算,等价于证
, 即是2.1结论.

四、

中点列极限运算
.

4.1 Thm 点列收敛

按分量收敛
, 记
则:

证:已知
,
.
时,根据,

由夹逼准则知
. 由夹逼定理,

4.3 Corollary

中点列极限运算
则有:

(1)
, 有
;

(2)

证: 显然由数列四则运算,
(1)中各分量线性的线性运算均收敛, 再由定理4.1可知;
(2)中的运算都是两个函数各分量之间有限次乘积求和,显然也成立.

4.3 Corollary 极限是零点的点列等价于其模列的极限是零


证:
为度量空间中显然结论;
由定理4.1,只需证
各分量列收敛到零. (反证法) 设存在一分量列
不收敛到零,则存在
. 与假设矛盾!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值