pcl把3dmesh 映射成2维_第七章 支持向量机(第3节 非线性支持向量机与核函数 第2小节 正定核)...

2.正定核

听名字先不要着急着慌哈~倒杯水调整一个舒适的坐姿慢慢来理解~

上一篇我们的内容是:采用经验方法直接给定一个核函数,这样就避免了通过寻找映射函数来计算内积从而构造出核函数。因为映射函数很难去寻找。

但是是不是随便给一个函数,我们都能称之为核函数呢?肯定不是,所以我们需要对我们选择的核函数进行一些判定——即是否满足核函数的充要条件。(也就是说,我现在好到了一个函数,如果这个函数满足该充要条件,我们就说它是核函数,就可以按照上一篇的内容直接得到非线性SVM模型。否则,我们就需要重新去找了)

而且(重点)通常所说的核函数就是——正定核函数(positive definite kernel function)。(即我们给定的函数必须满足正定核的充要条件)

本篇就是要来介绍一下正定核的充要条件(以后在选择核函数的时候,判断一个函数是否可以被用来作为核函数的方法,就是该函数是否满足这个充要条件

话不多说,直接给出正定核的充要条件定理

对称函数,则
为正定核函数的
充要条件是对任意
对应的
Gram矩阵:(感知机中也有这个矩阵的介绍)

半正定矩阵。

(上面这个定理,可能一下子还看不明白,不过没关系~咱们只要清楚一件事:如果选择的函数K满足上面这个条件,那么我们就说这个函数是正定核函数,即可以被用在非线性SVM模型中。)

(关于这个定理的证明,说实话,我还是理解的不够深刻~我仍然把整个证明过程列出来,能看懂的就看看把~~)

在证明这个定理之前,我们先来学习一下有关的预备知识
假设

是定义在
上的
对称函数,并且对任意的
关于
的Gram矩阵是
半正定的。则我们就可以依据函数
,构成一个
希尔伯特空间(Hilbert space)构成这个希尔伯特空间的步骤有三步:首先定义映射
并构成向量空间
;然后在
上定义内积构成内积空间;最后将
完备化构成希尔伯特空间。这三步书中都有详细的介绍~我还是再写一遍吧~加深一下印象,说不定理解地也会更加深刻~

第一步:定义映射,构成向量空间

先定义映射:

根据这一映射,对任意

,定义线性组合:

考虑以上面线性组合为元素的集合

。由于集合
对加法和数乘运算是封闭的,所以
构成一个向量空间。

第二步:在

上定义内积,使其成为内积空间

首先我们来在

上定义
一个运算:对任意
,有

定义运算

。此时我们来证明这个运算“
”是空间
内积。为此我们需要证明以下 四个条件:

(1)

(2)

(3)

(4)

由于

对称函数,故(1)~(3)式容易证得。现主要证明(4)式,由前面定义的那个运算“
”可得:

对此式由Gram矩阵的半正定性知右端非负,即

再来证明“

”充分性显然,不用多说。关键证明
必要性,要证明必要性,首先 证明不等式

,于是有:

不等式左端是

的二次三项式,非负,其
判别式小于等于0,即

于是不等式

得证。

接着再证“

”。事实上,若
,则按运算
的定义式,对任意的
,有

于是,

由刚才证明的那个不等式,有

进一步推出:

此式即可表明,当

时,对任意的
都有

至此就证明了之前假设的那个运算

就是向量空间
内积。这里,赋予了内积的向量空间为 内积空间。即
是一个内积空间。

既然运算”

“是内积运算,那我就还是用内积符号”
“表示,即若

第三步:将内积空间

完备化为希尔伯特空间

现在将内积空间

完备化。由上一步定义的内积可以得到
范数
,因此,
是一个
赋范向量空间。根据 泛函分析理论(看得懂就看看吧~看不懂的比如我,就知道有这回事就行了~),对于不完备的赋范向量空间
,一定可以使之完备化,得到
完备的赋范向量空间
。一个内积空间,当作为一个赋范向量空间是完备的时候,就是
希尔伯特空间。这样就得到了一个希尔伯特空间

这一希尔伯特空间

称为
再生核希尔伯特空间(reproducing kernel Hilbert space,RKHS)。为什么这样叫呢?这是由于 核K具有再生性,即满足:

称为再生核

上面就是就是证明正定核充要条件定理的预备知识。下面就来证明它

证明:必要性。由于

上的正定核,所以存在从
到希尔伯特空间
的映射
,使得:

于是,对任意

,构造
关于
Gram矩阵

对任意

,有

表明

关于
的Gram矩阵是
半正定的

充分性。已知对称函数

对任意
关于
Gram矩阵半正定的。根据前面的结果,对给定的
,可以构造从
到某个希尔伯特空间
的映射:

由前面第三步内容知,

并且

则,

表明

上的
核函数

上面就是该定理的证明了。该定理给出了正定核的充要条件,因此可以作为正定核(即核函数)的另一个定义

正定核的等价定义:

是定义在
上的
对称函数,如果对任意
对应的Gram矩阵

半正定矩阵,则称

正定核。(即可以用来作核函数求解非线性SVM模型)

【重要】这一定义在构造核函数时很有用。但对于一个凭经验选择的具体函数

来说,检验它是否为正定核函数
并不容易,因为对任意有限输入集
,要验证函数
对应的Gram矩阵
是否为半正定十分不容易。(这里就是说,前面啰嗦了一大堆,其实在实际应用中,正定核的充要条件定理并 没有什么太大的作用。它对于我们寻找映射函数来构造核函数来说,提供了检验的方法和理论的支撑,但是实际中,我们选择的具体函数并不容易用它来检验)

那实际问题中,我们怎么办呢?实际问题中我们往往应用已经经过检验的现成的核函数(这也太真实了~),就是说我们通过以往的经验,已经形成了一个“核函数库”了,等到遇到实际问题时,我们看看问题是什么样子的类型,然后凭经验从“核函数库”里拿出那个我们认为最合适的核函数出来,不知道这样理解对不对,总之太真实了~~

另外,这一小节的最后,书中还由一句话:“由Mercer定理可以得到Mercer核(Mercer Kernel),正定核比Mercer核更具一般性。”就没有别的解释了,百度了下:

Mercer 定理:任何半正定的函数都可以作为核函数。具体的内容需要自行去了解,我就不叙述了~

如上所述,实际应用中,核函数一般是凭经验选取的,那么接下来我们就来介绍实际中常用的核函数有哪些吧~~

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值