Qdrant 的基础教程

Qdrant是一个开源的向量数据库,它专注于高维向量的快速相似性搜索。以下是一个基础的Qdrant教程,帮助你开始使用Qdrant进行向量数据的存储和搜索。

安装Qdrant

首先,你需要安装Qdrant服务。Qdrant提供了Docker镜像,使得安装和运行非常简单。

# 使用Docker拉取Qdrant镜像并运行
docker pull qdrant/qdrant:latest
docker run -p 6333:6333 qdrant/qdrant:latest

安装Qdrant客户端

Qdrant提供了Python客户端,你可以通过pip安装它。

pip install qdrant-client

初始化Qdrant客户端

在Python中,你可以初始化Qdrant客户端并连接到Qdrant服务。

from qdrant_client import QdrantClient
# 初始化客户端
client = QdrantClient(host='localhost', port=6333)

创建集合(Collection)

在Qdrant中,你需要创建一个集合来存储向量数据。

# 创建集合的schema
collection_schema = {
    "name": "my_collection",
    "vector_size": 128,
    "distance": "Cosine"
}
# 创建集合
client.create_collection(collection_schema)

插入向量数据

接下来,你可以向集合中插入向量数据。

# 准备向量数据
vectors = [[random.random() for _ in range(128)] for _ in range(1000)]
ids = list(range(1000))
# 插入向量
client.upsert_points(collection_name="my_collection", points={"ids": ids, "vectors": vectors})

创建索引

为了加速搜索,你需要为集合创建索引。

# 创建索引
client.create_index(collection_name="my_collection", index_params={"metric": "Cosine", "hnsw_config": {"m": 16, "ef_construction": 200}})

搜索向量

现在你可以使用Qdrant进行向量搜索了。

# 准备查询向量
query_vector = [random.random() for _ in range(128)]
query_result = client.search(collection_name="my_collection", query_vector=query_vector, limit=10)
# 打印搜索结果
for hit in query_result:
    print(f"ID: {hit.id}, Score: {hit.score}")

清理资源

如果你不再需要集合,可以删除它。

client.delete_collection(collection_name="my_collection")

以上是Qdrant的基础使用流程。你可以根据具体的应用需求调整集合的配置、索引参数和搜索逻辑。Qdrant的官方文档提供了更详细的指南和高级功能,你可以查阅官方文档以获取更多信息。

很高兴为您提供有关 Qdrant 的详细教程! ## Qdrant 教程 ### 什么是 QdrantQdrant 是一个开源的向量搜索引擎,专门用于处理大规模的高维向量数据。它提供了快速的向量相似度搜索和高效的向量数据存储功能,可广泛应用于图像搜索、推荐系统、自然语言处理等领域。 ### 安装 Qdrant 1. 安装依赖项: ```bash $ sudo apt-get update $ sudo apt-get install -y libssl-dev pkg-config ``` 2. 下载并编译 Qdrant: ```bash $ git clone https://github.com/qdrant/qdrant.git $ cd qdrant $ make build ``` 3. 运行 Qdrant: ```bash $ ./qdrant start ``` ### 使用 Qdrant 1. 插入向量数据: ```bash $ curl -X POST -H "Content-Type: application/json" -d '{ "ids": [1, 2, 3], "vectors": [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9]] }' http://localhost:6333/collections/my_collection/documents ``` 2. 搜索相似向量: ```bash $ curl -X POST -H "Content-Type: application/json" -d '{ "vector": [0.2, 0.3, 0.4], "top": 2 }' http://localhost:6333/collections/my_collection/search ``` 3. 删除向量数据: ```bash $ curl -X DELETE http://localhost:6333/collections/my_collection/documents/1 ``` ### 更多操作 - 创建集合: ```bash $ curl -X POST -H "Content-Type: application/json" -d '{ "collection_name": "my_collection", "distance": "euclidean", "fields": [ { "name": "field1", "type": "int32", "index": true }, { "name": "field2", "type": "string", "index": true } ] }' http://localhost:6333/collections ``` - 查看集合信息: ```bash $ curl -X GET http://localhost:6333/collections/my_collection ``` - 查看集合中的所有文档: ```bash $ curl -X GET http://localhost:6333/collections/my_collection/documents ``` - 删除集合: ```bash $ curl -X DELETE http://localhost:6333/collections/my_collection ``` ### Qdrant Web 控制台 Qdrant 还提供了一个 Web 控制台,用于可视化管理和监控向量数据集合。您可以通过访问 `http://localhost:6333/console` 来打开控制台,并使用默认的用户名和密码(admin/admin)进行登录。 在控制台中,您可以执行集合创建、查询、删除等操作,并查看集合的统计信息和监控指标。 ### 结束 Qdrant 进程 要停止 Qdrant 进程,可以执行以下命令: ```bash $ ./qdrant stop ``` ### 总结 这是一个简单的 Qdrant 教程,涵盖了安装、使用和管理 Qdrant 的基本操作。您可以根据实际需求进一步探索和学习 Qdrant 的更多功能和配置选项。有关更详细的文档和示例,请参阅 Qdrant 官方文档(https://qdrant.github.io/qdrant/)。祝您使用 Qdrant 开发出强大的向量搜索应用!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东方佑

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值