python垃圾短信识别_Scikit-Learn机器学习实践:垃圾短信识别

本文介绍了如何利用Scikit-Learn的朴素贝叶斯算法进行垃圾短信识别。首先,通过pandas和jieba对短信数据进行处理和分词,然后提取特征和目标数据,接着分割训练集和测试集。使用CountVectorizer和TfidfTransformer提取文本特征,并建立朴素贝叶斯分类器进行训练。最终,模型的准确率达到了0.98,表现出色。
摘要由CSDN通过智能技术生成

机器学习与垃圾短信识别

前不久,我们使用NLTK的贝叶斯分类模型垃圾对短信数据进行机器学习的垃圾短信识别。

其实除了使用NLTK,我们还可以使用Scikit-Learn这个集成了诸多机器学习算法的模块进行上述的实验。

Scikit-Learn的API设计非常合理和高效,对于初触机器学习的同学来说非常友好,值得大家尝试和使用。本人也经常在实验环境和工作环境中使用scikit-learn进行机器学习的建模。

下面,我们就使用scikit-learn模块,通过其朴素贝叶斯算法API对短信数据进行一次垃圾短信的识别。

导入短信数据

首先,我们需要对原始的短信数据进行处理,导入pandas模块和jieba模块。

116390586_1_20171117025206661

pandas模块用于读取和处理数据,jieba模块用于对短信进行分词。

接着,我们导入短信数据:

116390586_2_20171117025206755

查看一下部分短信数据:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值