
由于光线不足,在户外场景中拍摄的图像可能会严重退化。这些图像可能具有较低的动态范围和较高的噪声水平,从而影响了计算机视觉算法的整体性能。要使计算机视觉算法在弱光条件下更强大,需要使用弱光图像增强功能来改善图像的可见性。弱光图像或HDR图像的像素级反转直方图与朦胧图像的直方图非常相似。因此,您可以使用除雾技术来增强低光图像。
使用除雾技术来增强低光图像包括三个步骤:
- 步骤1:将弱光图像反转。
- 第2步:将雾度消除算法应用于倒置的弱光图像。
- 步骤3:反转增强型图片。
使用除雾算法增强弱光图像
导入在弱光下捕获的RGB图像。
A = imread('lowlight_11.jpg');
figure, imshow(A);

反转图像并注意原始图像中的弱光区域显得模糊。
AInv = imcomplement(A);
figure, imshow(AInv);

使用imreducehaze
函数减少雾度。
BInv = imreducehaze(AInv);
figure, imshow(BInv);