语言编写李雅普诺夫函数_简单易读的动力系统:从流到李雅普诺夫指数

这个专栏里的东西严格来说不仅仅是神经学文献的阅读笔记。更多的是与神经学研究相关的一些领域的一些预备性知识。举个例子,如果你要了解Hodkin-Huxuly方程,那么对于动力系统的了解必然是不可少的,这有助于我们明晰H-H方程的动力学性质,以及混沌特性。在更新完动力系统的部分之后,我可能会稍微把H-H方程的模拟说一下,更多的还是基于文献的数据。

我的打算是把动力系统讲得简单易懂,让一个高中生都能够理解的程度。对于其中的概念,我不仅会单独给出数学上的定义,还会用形象化的语言去描述这个概念的意义。

首先给出动力系统的概念,直白地说,动力系统是指一类微分方程组,这类微分方程组的坐标的时间微分是由坐标和时间的函数关系给出的。如果其时间微分不显含t,则称之为自治方程;如果显含时间t,那么称之为非自治方程

更多情况下我们考虑自治方程,它是形式如下的等式:

其中

大多数情况下表示连续函数,因为他们的光滑性足够好,处理起来比较方便。在上面的式子中,坐标分别为
,它们对时间t的导数存在这样的函数关系。

当然,上面的表述是十分繁复的,对于高维的情况,需要写出大量的微分方程。因此我们引入向量来简化上面的表述。以后我们用无脚标的

表示向量,即
。然后,我们用
表示一个
的映射,用
来表示这个函数向量的第一个分量。在这里,我们用大写的字母表示一个函数向量,用小写或者脚标的形式来表示一个分量。

1,连续性的影响

下面我们来讨论一下连续性的影响。显然,对于一个映射,必然存在一个定义域,在定义域之外,我们不讨论动力系统的图像。

对于上述微分方程组,只要

有可积性,那么理论上,它的解是存在的。微分方程组的解也许可以用一定的解析形式表达出来,这种解我们称之为
解析解,但是对于绝大多数的微分方程而言,解析解是不存在的。我们在这里不给出不存在解析解的证明,以及存在解析解的条件,因为这对于我们来说并不是很重要。但是,在无限精度的情况下,存在微分方程的 数值解。对于微分方程的解,我们统称为 流(flow)。

流是个什么东西呢?在那之前,我们先介绍微分方程组的场,场是引入流不可或缺的。

首先我们以上面的式子为例,给出一个二维坐标平面

,在二维平面中,我们可以定义每一点的方向向量
,只要对平面内的每一个点,都做这样的方向向量的运算,我们就可以得到一个
平面矢量场。对其中每一个点,沿着方向向量方向走无限小的距离,就可以到达另一个点,不停地这样操作,我们就可以得到一条曲线。如果
是连续的,那么我们得到的是一条光滑的曲线。(证明从略)

所有的这样的光滑曲线,组成的一个集合,我们称之为

,其中的每一个元素,都是上述微分方程组的一个解。

注意,流是不相交的,因为相交会出现一个问题:在交点处,存在两个方向向量,但是,按照我们的定义,某一点的方向向量是惟一的,因而矛盾。更严谨的数学证明不给出。

连续的函数给出的流的性质是“好的”。因为它在定义域内是光滑的,这十分有利于分析。如果

的其中一个分量不是连续的,那么其图像会产生“
拐点”,因此其分析性质是不够“好的”。

下面给出一个例子,是洛伦兹系统的流的示意图。(注:这里给出的是数值计算的结果,严格来说是不够精确的,在更小的迭代步长和更高的迭代次数的情况下,其图像的“腹腔”相比于该例图更下收缩。)

1d50819ed3025edf1c20799657a412bb.png
洛伦兹系统的流的图像。右端下凹部分趋向了洛伦兹吸引子,吸引子的图像在下面给出。迭代的起始点为(500,500,500)

d9a5b9c5df88405c4d6a696b428d49ec.png
洛伦兹吸引子的放大图像。

2,流的体积变化

首先我们定义流的通用符号,我沿用的是《动力系统导论》中的符号,我们定义:

表示起始点为
的流,经过时间
演化后的位置
。(我们默认
为点)因此,流是一个动态的概念,我们不应该仅仅考虑其静态的局部。

下面我们讨论一下流的群性质。易知:

。这便是流的群性质。

接下来,我们引入一个发散量的概念。其实,发散量的概念,与场中的散度的概念是一样的。我们首先回顾一下场的散度的概念。对于一个矢量场

,其散度为:
。其含义为,用哈密顿算符作用于函数矢量
,得到的结果为散度。散度是指朝每个方向的发散量的总和,其和表示体积膨胀的变化率。

发散量的概念与之类似,用以衡量流上一点的体积变化率。事实上谈论一个点的体积变化率是没有意义的,因为一个点的定义就是要求无穷小,自然没有体积变化率的概念。在这里,我们指的更多是一个足够小半径的球,这个足够小半径的球中的每一点,我们都将其取为初始点,也就是说,是这样的一个集合A:

其中,

表示的是以下集合
,
表示该空间中的一点,
表示一个足够小的半径。将这两个集合分开写,是为了便于理解。因为我们这里需要一个动态的集合和一个静态的集合,
表示动态的集合,
表示了静态的集合,因此我们令A是时间t的函数,在t=0时,

于是,我们可以介绍接下来的Liouville公式,这个公式实际上是单变量微积分中微分方程的Liouville公式在动力系统中的推广。

对于系统

,我们称其发散量为
,那么,对于上述的
,我们有:
是指通常意义下的
Lebesgue测度

对于Liouville公式,有一个非常简单而直接的例子,就是当发散量为0时,

的测度是不随时间变化而变化的。

3,小偏差与李雅普诺夫指数

对于动力系统的偏导数矩阵,通常概念下的偏导数是毫无意义的。因为其某一点的偏导数向量方向与该点场的方向是一致的。这是动力系统独特的方程形式所带来的,因此,我们用如下的方法来定义其偏导数矩阵

在此之前,在正交单位向量基中,我们约定

表示第
个方向的单位向量。

在上述约定下,我们称,对

的偏导数矩阵是指如下的形式:

用形象化的方法来解释,就是:流的第

个方向对
求偏导数,就是对
方向有个长为
的小偏差作用下得到的新的流的第
个方向的偏差在
时的极限。

这一点正满足了我们研究动力系统的需求,因为我们考虑一个动力系统,不关心它的静态性质,而是关注它的动态演化性质,而以上的偏导数矩阵定义,很好地满足了这个要求,虽然从计算上来说非常复杂,绝大多数下都需要通过数值计算去得到。

有了这个好的偏导数矩阵,我们就可以去讨论李雅普诺夫指数

首先需要声明,对于一个高维系统(

),其李雅普诺夫指数一共有
个,而且其中必定有一个方向的李雅普诺夫指数是0。我们考虑其中一个李雅普诺夫指数,永远伴随着这个李雅普诺夫指数所对应的方向。

接下来,我们讨论发散量为常数的动力系统。

我们称小偏差的方向为

,是指讨论的第
个方向的小偏差(我们用上标表示第
个向量),
当所有的小偏差方向正交时,所有方向的李雅普诺夫指数之和为发散量

我们称小偏差通过演化之后得到的大偏差为

,有了这些概念,就可以开始介绍李雅普诺夫指数了。

对于某个方向

,我们称这个方向的李雅普诺夫指数
是按照如下方式定义的:

=

也就是说,李雅普诺夫指数表现的是一个极限性质,它表现了系统演化的最终走向。对于一个初始点来说,可能某个方向的李雅普诺夫指数是正的,而另一个是负的。最后的最后,对于一个初始点,其沿着该点场的方向的李雅普诺夫指数为0,证明从略,但是从直观上我们也可以理解,那就是如果在每一点都沿着场的方向一直走,那么就不会产生偏差,上述极限式的分子一直为0。

对于数学基础不是特别扎实的人,可以单单看每个定义后面的简要文字描述,可能会更好理解一点。

最后的最后,我们来谈论一下洛伦兹吸引子的测度。显然,整个空间都是洛伦兹系统的吸引域(吸引域的概念会在下篇文章给出)。而洛伦兹吸引子的范围是很小的,我们可以考虑这样的一个吸引域:

,其测度为

我们使用的参数为

,算得其发散量为
,因此按照Liouville公式,可以得到其极限体积为0。然而,洛伦兹吸引子的混沌特性包括了每一点附近的轨道都是稠密的。因此,尽管看起来洛伦兹吸引子非常优美,而且占据一定的空间。
但是,洛伦兹吸引子的测度为0。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值