腾讯云智
腾讯云智是负责"腾讯云"的相关业务,总部在西安,其余办公地点主要分布在二线城市。
前几年总是有「腾讯云智 VS 华为 OD」的 Offer 对比,当时两者的热度属于同一档位。这几年随着华为 OD 部队的不断壮大,加上起步学历背景的水涨船高,腾讯云智的讨论便少了许多。
但实际上腾讯云智的薪资待遇,还是一直在线的。
尤其是其 「有房补(二线城市,每月 1k)、最高 16薪、公积金比例为 12%」 等福利。
本次秋招,腾讯云智的开奖,虽然说不上多惊艳,但在二线城市还是有着满满的竞争力。
-
西安-运维:本科,12k * 16、每月 1k 房补、公积金 12%、2W~2.4W 签字费 -
西安-前端:本科,12k * 16、每月 1k 房补、公积金 12%、2W~2.4W 签字费 -
西安-后端:本科,13k * 16、每月 1k 房补、公积金 12%、2W~2.4W 签字费 -
武汉-后端:本科,14.5k * 16、每月 1k 房补、公积金 12%、2W~2.4W 签字费
西安和武汉两个城市的开奖情况大差不差,基本开奖范围都在 12k~15k 之间。
签字费可以简单理解为"入职奖金",只有首年有,一般只会出现在大厂的一线城市 Offer 中。腾讯云智这次在二线城市的 Offer 中基本都给了签字费,而且都在 2W 以上,这点算是比较惊喜。
对此,你怎么看?看惯了那些动辄 20k+ 的校招薪资,是不是觉得腾讯云智的开奖特接地气?
话说大家当年有拿过签字费吗?欢迎评论区交流。
...
回归主题。
来一道和「秋招」相关的算法题。
题目描述
平台:LeetCode
题号:719
数对
由整数 a
和 b
组成,其数对距离定义为 a
和 b
的绝对差值。
给你一个整数数组 nums
和一个整数 k
,数对由
和
组成且满足
。
返回所有数对距离中第 k
小的数对距离。
示例 1:
输入:nums = [1,3,1], k = 1
输出:0
解释:数对和对应的距离如下:
(1,3) -> 2
(1,1) -> 0
(3,1) -> 2
距离第 1 小的数对是 (1,1) ,距离为 0 。
示例 2:
输入:nums = [1,1,1], k = 2
输出:0
示例 3:
输入:nums = [1,6,1], k = 3
输出:5
提示:
二分 + 双指针
根据题意,由于对距离定义使用的是绝对值,因此从原数组中找数对 ,等价于在排序数组中找数对 。
同时由于 的范围为 ,因此我们不能使用复杂度为 的「多路归并」做法来做。
利用数据范围 ,我们知道距离值域范围为 ,假设所能形成的距离序列为 ,此时在以第 小的距离值为分割点的数轴上,具有「二段性」,记这第 小的距离值为 :
-
处于 右侧的所有位置 (包含 ) 「必然满足」「序列 中值小于等于 的数不少于 个」; -
处于 左侧的所有位置 (不包含 ) 「不一定满足」「序列 中值小于等于 的数不少于 个」(当且仅当 在序列 中不重复,或 恰好是连续段距离值中的左端点时,必然不满足)。
因此这本质上是一个满足 1?
特性(而不是 10
特性)的问题,我们可以使用「二分」来找到
值。
假设当前我们二分到的值是
,利用我们排序好的 nums
,我们并不需要真正的构建出序列
,即可统计值小于等于
的数量:枚举左端点
,每次找第一个不满足条件的右端点
(由于
是第一个不满足条件的值,因此合法右端点范围为
,共
个),利用 nums
有序,并且所有
均为正数,可知
会随着
增大而逐步增大,即这部分利用「双指针」可实现
复杂度。
Java 代码:
class Solution {
public int smallestDistancePair(int[] nums, int k) {
Arrays.sort(nums);
int l = 0, r = (int)1e6;
while (l < r) {
int mid = l + r >> 1;
if (check(nums, mid) >= k) r = mid;
else l = mid + 1;
}
return r;
}
int check(int[] nums, int x) {
int n = nums.length, ans = 0;
for (int i = 0, j = 1; i < n; i++) {
while (j < n && nums[j] - nums[i] <= x) j++;
ans += j - i - 1;
}
return ans;
}
}
C++ 代码:
class Solution {
public:
int smallestDistancePair(vector<int>& nums, int k) {
sort(nums.begin(), nums.end());
int l = 0, r = 1e6;
while (l < r) {
int mid = l + r >> 1;
if (check(nums, mid) >= k) r = mid;
else l = mid + 1;
}
return l;
}
int check(const vector<int>& nums, int x) {
int n = nums.size(), ans = 0;
for (int i = 0, j = 1; i < n; i++) {
while (j < n && nums[j] - nums[i] <= x) j++;
ans += j - i - 1;
}
return ans;
}
};
Python 代码:
class Solution:
def smallestDistancePair(self, nums: List[int], k: int) -> int:
nums.sort()
l, r = 0, 10**6
while l < r:
mid = l + r >> 1
if self.check(nums, mid) >= k:
r = mid
else:
l = mid + 1
return r
def check(self, nums, x):
n, ans = len(nums), 0
j = 1
for i in range(n):
while j < n and nums[j] - nums[i] <= x:
j += 1
ans += j - i - 1
return ans
TypeScript 代码:
function check(nums: number[], x: number): number {
let n = nums.length, ans = 0;
for (let i = 0, j = 1; i < n; i++) {
while (j < n && nums[j] - nums[i] <= x) j++;
ans += j - i - 1;
}
return ans;
}
function smallestDistancePair(nums: number[], k: number): number {
nums.sort((a, b) => a - b);
let l = 0, r = 1000000;
while (l < r) {
let mid = l + r >> 1;
if (check(nums, mid) >= k) r = mid;
else l = mid + 1;
}
return r;
};
-
时间复杂度:排序的复杂度为 ,二分答案复杂度为 ,其中 为距离值域。整体复杂度为 -
空间复杂度:
最后
巨划算的 LeetCode 会员优惠通道目前仍可用 ~
使用福利优惠通道 leetcode.cn/premium/?promoChannel=acoier,年度会员 有效期额外增加两个月,季度会员 有效期额外增加两周,更有超大额专属 🧧 和实物 🎁 福利每月发放。
我是宫水三叶,每天都会分享算法知识,并和大家聊聊近期的所见所闻。
欢迎关注,明天见。
更多更全更热门的「笔试/面试」相关资料可访问排版精美的 合集新基地 🎉🎉