腾讯云智开奖,二线城市也有大笔签字费了

腾讯云智

腾讯云智是负责"腾讯云"的相关业务,总部在西安,其余办公地点主要分布在二线城市。

前几年总是有「腾讯云智 VS 华为 OD」的 Offer 对比,当时两者的热度属于同一档位。这几年随着华为 OD 部队的不断壮大,加上起步学历背景的水涨船高,腾讯云智的讨论便少了许多。

但实际上腾讯云智的薪资待遇,还是一直在线的。

尤其是其 「有房补(二线城市,每月 1k)、最高 16薪、公积金比例为 12%」 等福利。

本次秋招,腾讯云智的开奖,虽然说不上多惊艳,但在二线城市还是有着满满的竞争力。

  • 西安-运维:本科,12k * 16、每月 1k 房补、公积金 12%、2W~2.4W 签字费
  • 西安-前端:本科,12k * 16、每月 1k 房补、公积金 12%、2W~2.4W 签字费
  • 西安-后端:本科,13k * 16、每月 1k 房补、公积金 12%、2W~2.4W 签字费
  • 武汉-后端:本科,14.5k * 16、每月 1k 房补、公积金 12%、2W~2.4W 签字费

西安和武汉两个城市的开奖情况大差不差,基本开奖范围都在 12k~15k 之间。

签字费可以简单理解为"入职奖金",只有首年有,一般只会出现在大厂的一线城市 Offer 中。腾讯云智这次在二线城市的 Offer 中基本都给了签字费,而且都在 2W 以上,这点算是比较惊喜。

对此,你怎么看?看惯了那些动辄 20k+ 的校招薪资,是不是觉得腾讯云智的开奖特接地气?

话说大家当年有拿过签字费吗?欢迎评论区交流。

...

回归主题。

来一道和「秋招」相关的算法题。

题目描述

平台:LeetCode

题号:719

数对 由整数 ab 组成,其数对距离定义为 ab 的绝对差值。

给你一个整数数组 nums 和一个整数 k,数对由 组成且满足

返回所有数对距离中第 k 小的数对距离。

示例 1:

输入:nums = [1,3,1], k = 1

输出:0

解释:数对和对应的距离如下:
(1,3) -> 2
(1,1) -> 0
(3,1) -> 2
距离第 1 小的数对是 (1,1) ,距离为 0 。

示例 2:

输入:nums = [1,1,1], k = 2

输出:0

示例 3:

输入:nums = [1,6,1], k = 3

输出:5

提示:

二分 + 双指针

根据题意,由于对距离定义使用的是绝对值,因此从原数组中找数对 ,等价于在排序数组中找数对

同时由于 的范围为 ,因此我们不能使用复杂度为 的「多路归并」做法来做。

利用数据范围 ,我们知道距离值域范围为 ,假设所能形成的距离序列为 ,此时在以第 小的距离值为分割点的数轴上,具有「二段性」,记这第 小的距离值为

  • 处于 右侧的所有位置 (包含 「必然满足」「序列 中值小于等于 的数不少于 个」;
  • 处于 左侧的所有位置 (不包含 「不一定满足」「序列 中值小于等于 的数不少于 个」(当且仅当 在序列 中不重复,或 恰好是连续段距离值中的左端点时,必然不满足)。

因此这本质上是一个满足 1? 特性(而不是 10 特性)的问题,我们可以使用「二分」来找到 值。

假设当前我们二分到的值是 ,利用我们排序好的 nums,我们并不需要真正的构建出序列 ,即可统计值小于等于 的数量:枚举左端点 ,每次找第一个不满足条件的右端点 (由于 是第一个不满足条件的值,因此合法右端点范围为 ,共 个),利用 nums 有序,并且所有 均为正数,可知 会随着 增大而逐步增大,即这部分利用「双指针」可实现 复杂度。

Java 代码:

class Solution {
    public int smallestDistancePair(int[] nums, int k) {
        Arrays.sort(nums);
        int l = 0, r = (int)1e6;
        while (l < r) {
            int mid = l + r >> 1;
            if (check(nums, mid) >= k) r = mid;
            else l = mid + 1;
        }
        return r;
    }
    int check(int[] nums, int x) {
        int n = nums.length, ans = 0;
        for (int i = 0, j = 1; i < n; i++) {
            while (j < n && nums[j] - nums[i] <= x) j++;
            ans += j - i - 1;
        }
        return ans;
    }
}

C++ 代码:

class Solution {
public:
    int smallestDistancePair(vector<int>& nums, int k) {
        sort(nums.begin(), nums.end());
        int l = 0, r = 1e6;
        while (l < r) {
            int mid = l + r >> 1;
            if (check(nums, mid) >= k) r = mid;
            else l = mid + 1;
        }
        return l;
    }
    int check(const vector<int>& nums, int x) {
        int n = nums.size(), ans = 0;
        for (int i = 0, j = 1; i < n; i++) {
            while (j < n && nums[j] - nums[i] <= x) j++;
            ans += j - i - 1;
        }
        return ans;
    }
};

Python 代码:

class Solution:
    def smallestDistancePair(self, nums: List[int], k: int) -> int:
        nums.sort()
        l, r = 010**6
        while l < r:
            mid = l + r >> 1
            if self.check(nums, mid) >= k: 
                r = mid
            else
                l = mid + 1
        return r

    def check(self, nums, x):
        n, ans = len(nums), 0
        j = 1
        for i in range(n):
            while j < n and nums[j] - nums[i] <= x:
                j += 1
            ans += j - i - 1
        return ans

TypeScript 代码:

function check(nums: number[], x: number): number {
    let n = nums.length, ans = 0;
    for (let i = 0, j = 1; i < n; i++) {
        while (j < n && nums[j] - nums[i] <= x) j++;
        ans += j - i - 1;
    }
    return ans;
}
function smallestDistancePair(nums: number[], k: number): number {
    nums.sort((a, b) => a - b);
    let l = 0, r = 1000000;
    while (l < r) {
        let mid = l + r >> 1;
        if (check(nums, mid) >= k) r = mid;
        else l = mid + 1;
    }
    return r;
};
  • 时间复杂度:排序的复杂度为 ,二分答案复杂度为 ,其中 为距离值域。整体复杂度为
  • 空间复杂度:

最后

巨划算的 LeetCode 会员优惠通道目前仍可用 ~

使用福利优惠通道 leetcode.cn/premium/?promoChannel=acoier,年度会员 有效期额外增加两个月,季度会员 有效期额外增加两周,更有超大额专属 🧧 和实物 🎁 福利每月发放。

我是宫水三叶,每天都会分享算法知识,并和大家聊聊近期的所见所闻

欢迎关注,明天见。

更多更全更热门的「笔试/面试」相关资料可访问排版精美的 合集新基地 🎉🎉

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值