在linear model中,我们对各个特征线性组合,得到linear score,然后确定一个threshold,linear score < threshold 判为负类,linear score > threshold 判为正类。画PR曲线时, 我们可以想象threshold 是不断变化的。首先,threshold 特别大,这样木有一个是正类,我们计算出查全率与查准率; 然后 threshold 减小, 只有一个正类,我们计算出查全率与查准率;然后 threshold再减小,有2个正类,我们计算出查全率与查准率;threshold减小一次,多出一个正类,直到所有的类别都被判为正类。 然后以查全率为横坐标,差准率为纵坐标,画出图形即可。
例如,有
实际类别
linear score
threshold 为5
threshold 为4
threshold 为3
threshold 为2
threshold 为1
+
5.2
+
+
+
+
+
+
4.45
-
+
+
+
+
-
3.5
-
-
+
+
+
-
2.45
-
-
-
+
+
-
1.65
-
-
-
-
+
1 / 1
2 / 2
2 / 3
2 / 4
2 / 5
查全率
1 / 5
2 / 5
3 / 5
4 / 5
5 / 5
差准率
查全率: 预测为正的里面,实际为正的比例。
查准率:预测为正,实际为正 占的比例。
1 importmatplotlib2 importnumpy as np3 importmatplotlib.pyplot as plt4 Recall = np.array([0,1/5,2/5,3/5,4/5,5/5]) #从0开始更加平滑,美观,实际中,数据量很大时,趋近0。
5 Precison = np.array([1/1,2/2,2/3,2/4,2/5,0])6plt.figure()7 plt.ylim(0,1.1)8 plt.xlabel("Recall")9 plt.xlim(0,1.1)10 plt.ylabel("Precison")11plt.plot(Recall,Precison)12 plt.show()