mysql实现pr曲线_PR曲线 的 计算及绘制

在linear model中,我们对各个特征线性组合,得到linear score,然后确定一个threshold,linear score < threshold 判为负类,linear score > threshold 判为正类。画PR曲线时, 我们可以想象threshold 是不断变化的。首先,threshold 特别大,这样木有一个是正类,我们计算出查全率与查准率; 然后 threshold 减小, 只有一个正类,我们计算出查全率与查准率;然后 threshold再减小,有2个正类,我们计算出查全率与查准率;threshold减小一次,多出一个正类,直到所有的类别都被判为正类。 然后以查全率为横坐标,差准率为纵坐标,画出图形即可。

例如,有

实际类别

linear score

threshold  为5

threshold  为4

threshold  为3

threshold  为2

threshold  为1

+

5.2

+

+

+

+

+

+

4.45

-

+

+

+

+

-

3.5

-

-

+

+

+

-

2.45

-

-

-

+

+

-

1.65

-

-

-

-

+

1 / 1

2 / 2

2 / 3

2 / 4

2 / 5

查全率

1 / 5

2 / 5

3 / 5

4 / 5

5 / 5

差准率

查全率: 预测为正的里面,实际为正的比例。

查准率:预测为正,实际为正 占的比例。

1 importmatplotlib2 importnumpy as np3 importmatplotlib.pyplot as plt4 Recall = np.array([0,1/5,2/5,3/5,4/5,5/5]) #从0开始更加平滑,美观,实际中,数据量很大时,趋近0。

5 Precison = np.array([1/1,2/2,2/3,2/4,2/5,0])6plt.figure()7 plt.ylim(0,1.1)8 plt.xlabel("Recall")9 plt.xlim(0,1.1)10 plt.ylabel("Precison")11plt.plot(Recall,Precison)12 plt.show()

20180110231417692874.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值