python手写数字识别dnn_深度学习(一):Python神经网络——手写数字识别

本文介绍了使用Python实现手写数字识别的深度神经网络(DNN)。通过创建一个包含输入层、隐藏层和输出层的神经网络,并使用sigmoid激活函数,对MNIST数据集进行训练。经过多次迭代,网络最终可以对手写数字进行识别。
摘要由CSDN通过智能技术生成

1 importnumpy as np2 importscipy.special as ss3 importmatplotlib.pyplot as plt4 importimageio as im5 importglob as gl6

7

8 classNeuralNetwork:9 #initialise the network

10 def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate):11 #set number of each layer

12 self.inodes =inputnodes13 self.hnodes =hiddennodes14 self.onodes =outputnodes15 self.wih = np.random.normal(0.0, pow(self.inodes, -0.5), (self.hnodes, self.inodes))16 self.who = np.random.normal(0.0, pow(self.hnodes, -0.5), (self.onodes, self.hnodes))17 #learning rate

18 self.lr =learningrate19 #activation function is sigmoid

20 self.activation_function = lambdax: ss.expit(x)21 pass

22

23 #train the neural network

24 deftrain(self, inputs_list, targets_list):25 inputs = np.array(inputs_list, ndmin=2).T26 targets = np.array(targets_list, ndmin=2).T27 hidden_inp

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值