lda 协方差矩阵_机器学习-LDA(线性判别降维算法)

LDA是一种有监督的机器学习算法,旨在通过投影数据到低维空间,使同一类数据聚集,不同类数据分散。它假设数据按均值分类且各类有相同协方差矩阵。当数据主要由均值区分时,LDA表现优秀。算法流程包括计算类内、类间散度矩阵,然后进行特征分解找到最大特征值对应的特征向量。然而,当数据非高斯分布或类别数少时,LDA效果可能不佳。
摘要由CSDN通过智能技术生成

LDA(线性判别算法)

不同于PCA方差最大化理论,LDA算法的思想是将数据投影到低维空间之后,使得同一类数据尽可能的紧凑,不同类的数据尽可能分散。因此,LDA算法是一种有监督的机器学习算法。同时,LDA有如下两个假设:

(1) 原始数据根据样本均值进行分类。

(2) 不同类的数据拥有相同的协方差矩阵。

当然,在实际情况中,不可能满足以上两个假设。但是当数据主要是由均值来区分的时候,LDA一般都可以取得很好的效果。图1 LDA和PCA对数据进行降维

如图1所示,原始数据主要是根据均值来划分的,此时LDA降维效果很好,但是PCA效果就很差。图2 LDA和PCA对数据进行降维

图2的两类数据主要区别是方差不同,因此此时PCA降维效果比较好,而LDA降维效果比较差。

1 基本思想

将原始数据投影至低维空间,尽量使同一类的数据聚集,不同类的数据尽可能分散。

1 原理推导

假设我们现已有如下的数据集

equation?tex=D%3D%7B%28x_%7B1%7D%2Cy_%7B1%7D%29%2C%28x_%7B2%7D%2Cy_%7B2%7D%29%2C...%2C%28x_%7Bm%7D%2Cy_%7Bm%7D%29%2C%7D 其中样本

equation?tex=x_%7Bi%7D 为任意

equation?tex=n+ 维向量,类别

equation?tex=y_%7Bi%7D%5Cin%7BC_%7B1%7D%2CC_%7B2%7D%2C...%2CC_%7Bk%7D%7D ,定义

equation?tex=N_%7Bj%5Cin%7B1%2C2%2C...%2Ck%7D%7D 是第

equation?tex=j 类样本的个数,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值