人教版六年级上册第一单元 分数乘法的计算与分数乘法应用题各类题型解题思路专题总结
一、分数乘法计算
(一)分数乘法的意义:
1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。
例如:2/9×3表示求3个 2/9的和是多少?也表示2/9的 3 倍是多少?

3个 2/9的和是多少
2、分数乘分数是求一个数的几分之几是多少。
例如:1/2 × 1/4表示求1/2 的1/4是多少?

求1/2 的1/4是多少
(二)分数乘法的计算法则及注意事项:
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变(整数和分母约分) 。

分数乘以整数的意义和计算方法
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母(分子和分母约分)。

分数乘以分数的计算方法
3、分数与小数相乘:可以把小数化成分数,也可以把分数化成小数,也可以直接用分母与小数约分。

分数乘以小数的计算方法
4、为了计算简便,能约分的要先约分,再计算。
5、当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
6、分数连乘的计算方法:先约分,分子中可与分母约分的数都先约分,再用分子乘分子作积的分子,分母乘分母作积的分母。
7、分数的计算结果一定要保留最简分数。
(三)、乘积的变化规律(乘法中比较大小时):
一个数(0 除外)乘大于1的数(大于1的假分数),积大于这个数本身。
一个数(0 除外)乘小于1的数(0 除外,真分数),积小于这个数本身。
一个数(0 除外)乘1,积等于这个数本身。
一个数(0 除外)乘0,积等于0.

(四)、分数混合运算的运算顺序和整数的运算顺序相同。
同级混合运算(只有加减法或者只有乘除法),按照从左到右的顺序依次计算;
两级混合运算(既有乘除法,又有加减法),先算乘除、后算加减;
有小括号的时候,先算小括号里面的加减法,再算乘除法,后算括号外面的;
既有小括号又有中括号,先算中括号里面的小括号,再算中括号,最后算中括号外面。
(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a
乘法结合律: ( a × b )×c = a × ( b × c )
乘法分配律: ( a + b )×c = a c + b c 或 a c + b c = ( a + b )×c
二、分数乘法应用题(已知单位“1”的量用乘法,即求单位“1”的几分之几是多少)
1、找单位“1”: 一般分率句中分率的前面,或者“占”、“是”、“比”的后面,就是单位“1”的量。
2、画线段图帮助理解:
(1)、两个量的关系:画两条线段图,先画单位“1”的量,再画比较量;
(2)、部分和整体的关系:画一条线段图,先画整体,再画部分。
3、分数乘法应用题的基本类型:
(1)、求一个数的几分之几是多少: 一个数 × 几分之几【单位“1” × 分率】;

例题:求一个数的几分之几是多少
(2)、连续求一个数的几分之几是多少:一个数 × 几分之几 × 几分之几【单位“1” × 分率 × 分率】

例题2:连续求一个数的几分之几是多少
(3)、求比一个数多(或少)几分之几的数是多少:一个数 × (1+几分之几)或 一个数 × (1-几分之几) 【单位“1”× (1+(或-)分率)】

例3求比一个数多(少)几分之几的数
小技巧:
分率前是“的”: 单位“1”×分率=对应的量
分率前是“多或少”: 单位“1”×(1+分率)=对应的量
总结:分数乘法应用题其实并不难,找准单位“1”、找到要求的量以及这个量所对应的分率即可。
分数乘法和分数除法应用题,包括六年级上下册都会学到的百分数应用题,一定要把“量率对应”思想理解到位。
