map评价吗 voc数据集可以用coco_目标检测评价指标(mAP)

这篇博客详细介绍了目标检测中的评价指标,包括precision、recall、F1 Score和AUC ROC。重点讨论了mAP(平均精度均值),解释了VOC和COCO数据集中的mAP计算方法,以及IoU在评估中的作用。此外,还提供了Python代码示例来计算IoU。
摘要由CSDN通过智能技术生成

常见指标

precision 预测出的所有目标中正确的比例 (true positives / true positives + false positives).

recall 被正确定位识别的目标占总的目标数量的比例 (true positives/(true positives + false negatives)).

一般情况下模型不够理想,准确率高、召回率低,或者召回率低、准确率高。如果做疾病监测、反垃圾,则是保准确率的条件下,提升召回率。如果是做搜索,那就是保证召回的情况下提升准确率。^curv

Precision和Recall的计算图示如下:

caa254f94dd47d8c241eed6041384c14.png

以行人检测为例,精度就是检测出来的行人中确实是行人的所占的百分比;Recall就是正确检出的行人数量占行人总数的百分比,Recall=100%表示没有漏检;这两个常常是一对矛盾,通常我们总是希望既没有虚景也不会发生漏检的情况,也就是Precision和Recall均为100%的状况。

F1 score 通常我们使用precision和recall两个指标来衡量模型的好坏,但是同时要权衡这两个量,影响我们做决策的速度.可以使用F1 score来组合这两个量(又称F score,F measure,名称F没有什么意义): $$F_1\ \text{Score} ={2\over {1\over P}+{1\over R}}= 2{PR\over P+R}\in[0,1]$$ F1 score 是 $F=1/(\lambda{1\over P}+(1-\lambda){1\over R})$ 的简化版($\lambda=0.5$). P和R的值均是越大越好,因此F1 score也越大结果越好.

AUC ROC 曲线下的面积,面积越大,分类效果越好.ROC横轴为假正率(FP,false positive),纵轴为真正率(TP,true positive)。 通过给分类器设置不同的置信度阈值得到多组(FP,TP)数据绘制成ROC 曲线。ROC 曲线如下图所示:

a0eed14d7fd8c3777164731588f5b2ed1df.jpg

AUC 的含义:AUC值是一个概率值,当你随机挑选一个正样本以及一个负样本,当前的分类算法根据计算得到的Score值将这个正样本排在负样本前面的概率就是AUC值。当然,AUC值越大,当前的分类算法越有可能将正样本排在负样本前面,即能够更好的分类。

为什么使用ROC曲线? 评价标准已有很多,为什么还要使用ROC和AUC呢?因为ROC曲线有个很好的特性:当测试集中的正负样本的分布变化的时候,ROC曲线能够保持不变。在实际的数据集中经常会出现类不平衡(class imbalance)现象,即负样本比正样本多很多(或者相反),而且测试数据中的正负样本的分布也可能随着时间变化。^ref1

loss_bbox 预测边框和真实边框的坐标之间的差别,如采用smooth L1 loss计算.

mAP 对于每一类计算平均精度(AP,average precision),然后计算所有类的均值。mAP 综合考量了P、R,解决P,R的单点值局限性。PR曲线与ROC曲线类似,曲线下面积越大越好,因此我们定义PR曲线下面积为: $$ \rm{mAP} = \int_0^1 P(R)dR $$ 当然,这种

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值