深度学习attention原理_深度学习系列——attention机制与应用

本文详细介绍了注意力机制在深度学习中的应用,从起源、原理到Self-Attention和Multi-Head Attention的实现,以及在Transformer结构中的作用。此外,还提到了Attention在CV和NLP领域的具体应用,如BERT和OCR问题。
摘要由CSDN通过智能技术生成

本文介绍attention起源+原理和一些应用

一、简介

Attention机制通俗的讲就是把注意力集中放在重要的点上,而忽略其他不重要的因素。关于这个的解释个人感觉计算机视觉比NLP根据有直接的解释性。

注意力机制模仿了生物观察行为的内部过程,即一种将内部经验和外部感觉对齐从而增加部分区域的观察精细度的机制。例如人的视觉在处理一张图片时,会通过快速扫描全局图像,获得需要重点关注的目标区域,也就是注意力焦点。然后对这一区域投入更多的注意力资源,以获得更多所需要关注的目标的细节信息,并抑制其它无用信息。

NLP领域中较早的应该是Encoder-Decoder框架下的attention在机器翻译中得到较好的应用效果。但实际上机器翻译算法还是一般被学术界偏爱,工业界其实所覆盖的面还不算广。真正令attention在NLP中大火并在各个子领域得到应用的还是《attention is all you need》这篇文章提出的方法,应在之后应用于NLP大规模两段式模型中并陆续突破达到新的sota效果。attention model示意图

二、attention

关于 hard attention计算方式无非是在decode前面加一个权重矩阵。但不同于随机矩阵来训练权重,这里是采用了前向网络的输出来进行attention权重矩阵计算,并加入训练。

三、Self-AttentionScaled D

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值