NLP中的注意力模型 Attention model(学习心得)

Attention model intuition

在前面的 seq2seq 模型基础上做些改进,形成注意力模型
Attention 的思想已经是深度学习中最重要的之一

在这里插入图片描述
给定一个非常长的法语句子
前面讲到的模型,会把原句子输入编码,然后解码生成翻译
但是人类的做法是,一小部分,一小部分地进行翻译

以 Bleu score 来说
机器翻译对于短句子的处理效果较好
长句子的表现就会越来越差
而注意力模型会改善这个问题

注意力模型来源于 Dimitri Bahdanau, Camcrun Cho, Yoshe Bengio
虽然这个模型是为了机器翻译发明的,但是后来被推广到了其他应用领域
所以这个 paper 非常有开创力 和 影响力

在这里插入图片描述
我们在短句子上看下效果

这里我们使用双向 RNN 结构
由于不准备一个个词进行输出翻译,所以去掉上面的 y_hat

在这里插入图片描述
使用双向 RNN,可以计算 每个位置 的特征集,包括周围的词
然后我们使用另一个 RNN 来生成英文翻译

    <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值