数据分析--羊驼交易法则(选股)

羊驼交易法则

  起始时随机买入N只股票,每天卖掉收益最差的M支,再随机买入剩余股票池的M支。

  随机选股,周期调仓

改进策略:

  买入历史收益率最低的N只股票,调仓日留下反转程度大的股票,卖掉表现最差的M只股票

  再买入收益率最低的M只股票

 

from jqdata import *

def initialize(context):
    set_benchmark('000300.XSHG')
    set_option('use_real_price', True)
    set_order_cost(OrderCost(close_tax=0.001, open_commission=0.0003, close_commission=0.0003, min_commission=5), type='stock')

    g.security = get_index_stocks('000300.XSHG')
    g.period = 30  # 选取30天来计算收益率
    g.N = 10  # 总共持有10支股票
    g.change = 1 # 每次调仓1只股票
    g.init = True  # 只运行一次
    
    run_monthly(handle, 1)

# 获取所有按收益增长率排序之后的沪深300股票
def get_sorted_stocks(context, stocks):
    df = history(g.period, field='close',security_list=stocks).T
    df['ret'] = (df.iloc[:,len(df.columns)-1] - df.iloc[:,0]) / df.iloc[:,0]
    df = df.sort_values('ret', ascending=False)
    return df.index.values

def handle(context):
    if g.init: # 初始化,买入收益增长率最小的N支
        stocks = get_sorted_stocks(context,g.security)[:g.N]
        cash = context.portfolio.available_cash / len(stocks)
        for stock in stocks:
            order_value(stock, cash)
        g.init = False
        return
    # 调仓卖掉原有股票中反转最小的股票
    stocks = get_sorted_stocks(context, context.portfolio.positions.keys())
    for stock in stocks[-g.change:0]:
        order_target(stock, 0)
    # 调仓买入新的收益增长率最低的
    stocks = get_sorted_stocks(context, g.security)
    for stock in stocks:
        if len(context.portfolio.positions) >= g.N:
            break
        if stock not in context.portfolio.positions:
            order_value(stock, context.portfolio.available_cash)
羊驼交易+反转策略

 

 

posted on 2019-06-03 16:15 要一直走下去 阅读( ...) 评论( ...) 编辑 收藏

转载于:https://www.cnblogs.com/staff/p/10968197.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值