三年级数学老师,为了使小学生的思维更加有深度,于是给小学生写了一道难度大点的奥数题,这道题的解题关键在“切割”上,来看看是怎么切割的吧!
如图:

解题分析:
由题意可知是一大一小两个正方形,那么这两个正方形的每条边各是相等的。
因为两个正方形周长之差是32cm,所小正方形的每条边,都比大正方形的每条边长少:
32÷4=8cm
8cm其实也就是线段AE、GC的长度,即AE=8cm,GC=8cm
接下来就是作辅助线来帮助小学生理解了:
根据题意可知:两个正方形的面积之差是96平方厘米,即上图中的阴影部分的面积是96平方厘米。
下面采取“切割法”把图中的阴影部分的面积,切割成三部分,这也是这道题的解题关键,具体做法是:
由“线段EF”延长至“M点”,由“线段GF”延长至“N”。
如图所示:

根据图示可直观地看出:
图形FMDN是正方形,它的边长就是线段AE的长度,即8cm,那么根据这个条件,就可以求出正方形FMDN的面积,即:
8×8=64㎝²
那么再根据图中阴影部分的面积是96㎝²,可以求出剩下的阴影部分的面积,即:
96-64=32㎝²
根据图示也可看出:
“图形AEFN”和“图形GCMF”是完全相同的两个长方形,也就是这两个长方形的面积相同。
看到这儿,小学生可能也发现了:
这两个长方形的面积,其实就是刚刚上面求出的剩下的阴影部分的面积,即:32㎝²,根据这些可以求出其中一个长方形(长方形AEFN)的面积是:
32÷2=16㎝²
又知道这个长方形的一条边长:
AE=8cm
所以另外一条边长(也就是小正方形的边长)为:
16÷8=2㎝
那么小正方形的面积为:
2×2=4㎝²
再根据:AE=8㎝,BE=2㎝,可以求出大正方形边长,即AE的长为:
8+2=10㎝
所以大正方形的面积为:
10×10=100㎝²
计算如图:

这是道相当有难度的经典题,做这道题的关键在于对阴影部分的切割,也就是作的辅助线。
家有小学生的朋友们,可以让孩子做一做,看看能想到这种“切割法”吗?
如果你有不同的解题方法,欢迎留言探讨哦!
点击关注,随时学习,请@专注分享小学思维拓展题的虎妈猫师。