实现线段切割法_这道三年级奥数题,解题关键在“切割”上,来看看是怎么切割的...

这篇博客介绍了如何用线段切割法解决一道三年级奥数问题。通过切割图形,将面积差转化为求解正方形和长方形的边长,最终找出答案。解题关键在于辅助线的添加,帮助理解并解决阴影部分的面积。适合小学生及家长学习和探讨。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

三年级数学老师,为了使小学生的思维更加有深度,于是给小学生写了一道难度大点的奥数题,这道题的解题关键在“切割”上,来看看是怎么切割的吧!

如图:

a8194558db8467bc492811f1479dcded.png

解题分析:

由题意可知是一大一小两个正方形,那么这两个正方形的每条边各是相等的。

因为两个正方形周长之差是32cm,所小正方形的每条边,都比大正方形的每条边长少:

32÷4=8cm

8cm其实也就是线段AE、GC的长度,即AE=8cm,GC=8cm

接下来就是作辅助线来帮助小学生理解了:

根据题意可知:两个正方形的面积之差是96平方厘米,即上图中的阴影部分的面积是96平方厘米。

下面采取“切割法”把图中的阴影部分的面积,切割成三部分,这也是这道题的解题关键,具体做法是:

由“线段EF”延长至“M点”,由“线段GF”延长至“N”。

如图所示:

67e6955a2d7d1d908bbd273577a14a6b.png

根据图示可直观地看出:

图形FMDN是正方形,它的边长就是线段AE的长度,即8cm,那么根据这个条件,就可以求出正方形FMDN的面积,即:

8×8=64㎝²

那么再根据图中阴影部分的面积是96㎝²,可以求出剩下的阴影部分的面积,即:

96-64=32㎝²

根据图示也可看出:

“图形AEFN”和“图形GCMF”是完全相同的两个长方形,也就是这两个长方形的面积相同。

看到这儿,小学生可能也发现了:

这两个长方形的面积,其实就是刚刚上面求出的剩下的阴影部分的面积,即:32㎝²,根据这些可以求出其中一个长方形(长方形AEFN)的面积是:

32÷2=16㎝²

又知道这个长方形的一条边长:

AE=8cm

所以另外一条边长(也就是小正方形的边长)为:

16÷8=2㎝

那么小正方形的面积为:

2×2=4㎝²

再根据:AE=8㎝,BE=2㎝,可以求出大正方形边长,即AE的长为:

8+2=10㎝

所以大正方形的面积为:

10×10=100㎝²

计算如图:

bbd0d7319801a30dea41c9201418805c.png

这是道相当有难度的经典题,做这道题的关键在于对阴影部分的切割,也就是作的辅助线。

家有小学生的朋友们,可以让孩子做一做,看看能想到这种“切割法”吗?

如果你有不同的解题方法,欢迎留言探讨哦!

点击关注,随时学习,请@专注分享小学思维拓展题的虎妈猫师。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值